- Код статьи
- S19982860S0132342325040158-1
- DOI
- 10.7868/S1998286025040158
- Тип публикации
- Статья
- Статус публикации
- Опубликовано
- Авторы
- Том/ Выпуск
- Том 51 / Номер выпуска 4
- Страницы
- 715-723
- Аннотация
- Получение фракции двуцепочечной РНК – неотъемлемая часть исследований РНК-интерференции, направленных на решение как фундаментальных, так и прикладных задач. Наработка дцРНК в культуре бактерий – распространенная методика в силу сравнительно невысокой стоимости и потенциала для масштабирования. В данной статье мы предлагаем новый метод для быстрого и эффективного выделения дцРНК из культуры бактерий в качестве альтернативы классической фенол-хлороформной экстракции. В разработанной нами методике фенол заменен на менее токсичный метанол, а выделенная таким образом бактериальная тотальная РНК содержит до 25% целевой молекулы, при этом примесь ДНК в ней отсутствует, что в том числе делает допустимым применение такой дцРНК без дополнительных этапов очистки. Применение разработанной методики будет оправдано в лабораториях, занимающихся как фундаментальными, так и прикладными исследованиями РНК-интерференции. Однако для масштабирования технологии для применения в сельском хозяйстве могут потребоваться корректировки описанного в данной работе протокола.
- Ключевые слова
- двуцепочечная РНК выделение РНК наработка дцРНК в бактериях РНК-интерференция спрей-индуцированный сайленсинг генов
- Дата публикации
- 18.12.2024
- Год выхода
- 2024
- Всего подписок
- 0
- Всего просмотров
- 12
Библиография
- 1. Castel S.E., Martienssen R.A. // Nat. Rev. Genet. 2013. V. 14. P. 100–112. https://doi.org/10.1038/nrg3355
- 2. Svoboda P. // Front. Plant Sci. 2020. V. 11. P. 1237. https://doi.org/10.3389/fpls.2020.01237
- 3. Li H., Guan R., Guo H., Miao X. // Plant Cell Environ. 2015. V. 38. P. 2277–2285. https://doi.org/10.1111/pce.12546
- 4. Islam M.T., Davis Z., Chen L., Englander J., Zomorodi S., Frank J., Bartlett K., Somers E., Carballo S.M., Kester M., Shaked A., Pourtaheri P., Sherif M.S. // Microb. Biotechnol. 2021. V. 14. P. 1847–1856. https://doi.org/10.1111/1751-7915.13699
- 5. Kalyandurg P.B., Sundararajan P., Dubey M., Ghadamgah F., Zahid M.A., Whisson S.C., Vetukuri R.R. // Phytopathology. 2021. V. 111. P. 2166–2175. https://doi.org/10.1094/phyto-02-21-0054-sc
- 6. Mitter N., Worrall E.A., Robinson K.E., Li P., Jain R.G., Taochy C., Fletcher S.J., Carroll B.J., Lu G.Q. (Max), Xu Z.P. // Nat. Plants. 2017. V. 3. P. 1–10. https://doi.org/10.1038/nplants.2016.207
- 7. Islam M.T., Sherif S.M. // Int. J. Mol. Sci. 2020. V. 21. P. 2072. https://doi.org/10.3390/ijms21062072
- 8. Konakalla N.C., Bag S., Deraniyagala A.S., Culbreath A.K., Pappu H.R. // Viruses. 2021. V. 13. P. 662. https://doi.org/10.3390/v13040662
- 9. Sundaresha S., Sharma S., Bairwa A., Tomar M., Kumar R., Bhardwaj V., Jeevalatha A., Bakade R., Salaria N., Thakur K., Singh B.P., Chakrabarti S.K. // Pest. Manag. Sci. 2022. V. 78. P. 3183–3192. https://doi.org/10.1002/ps.6949
- 10. Gan D., Zhang J., Jiang H., Jiang T., Zhu S., Cheng B. // Plant Cell Rep. 2010. V. 29. P. 1261–1268. https://doi.org/10.1007/s00299-010-0911-z
- 11. Tenllado F., Martinez-Garcia B., Vargas M., Diaz-Ruiz J.R. // BMC Biotechnol. 2003. V. 3. P. 3. https://doi.org/10.1186/1472-6750-3-3
- 12. Ivanov A.A., Golubeva T.S. // J. Fungi. 2023. V. 9. P. 1100. https://doi.org/10.3390/jof9111100
- 13. Verdonck T.W., Yanden Broeck J. // Front. Physiol. 2022. V. 13. P. 836106. https://doi.org/10.3389/fphys.2022.836106
- 14. Ann S.-J., Donahue K., Koh Y., Martin R.R., Choi M.-Y. // Int. J. Insect Sci. 2019. V. 11. P. 4032. https://doi.org/10.1177/1179543319840323
- 15. Wang Z., Li Y., Zhang B., Gao X., Shi M., Zhang S., Zhong S., Zheng Y., Liu X. // Adv. Funct. Mater. 2023. V. 33. P. 3143. https://doi.org/10.1002/adfm.202213143
- 16. Guan R., Chu D., Han X., Miao X., Li H. // Front. Bioeng. Biotechnol. 2021. V. 9. P. 3790. https://doi.org/10.3389/fbioe.2021.753790
- 17. Strezsak S., Beuning P., Skizim N. // Anal. Methods. 2021. V. 13. P. 179–185. https://doi.org/10.1039/DDAY01498B
- 18. Aranda P.S., Lajoie D.M., Joreyk C.L. // Electrophoresis. 2012. V. 33. P. 366–369. https://doi.org/10.1002/elps.20110335
- 19. Livshits M.A., Amosova O.A., Lyubchenko Y.L. // J. Biomol. Struct. Dyn. 1990. V. 7. P. 1237–1249. https://doi.org/10.1080/073911102.1990.10508562
- 20. Wickham H., Averick M., Bryan J., Chang W., McGowan L.D.A., François R., Grolemund G., Hayes A., Henry L., Hester J., Kuhn M., Pedersen L.T., Miller E., Bache M.S., Muller K., Ooms J., Robinson D., Seidel P.D., Spinu V., Takahashi K., Yanghan D., Wilke C., Woo K., Yutani H. // J. Open Source Softw. 2019. V. 4. P. 1686. https://doi.org/10.21105/joss.01686