RAS BiologyБиоорганическая химия Russian Journal of Bioorganic Chemistry

  • ISSN (Print) 0132-3423
  • ISSN (Online) 1998-2860

A Phenol-Free Method for the Robust Isolation of the Double-Stranded RNA Produced in the E. coli HT115 Strain

PII
S19982860S0132342325040158-1
DOI
10.7868/S1998286025040158
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 51 / Issue number 4
Pages
715-723
Abstract
Obtaining a fraction of double-stranded RNA is an integral part of any RNA interference research whether it aimed at solving fundamental or applied problems. The production of dsRNA in bacterial culture is a common technique due to its comparative cheapness and scaling-up opportunities. In this article, we propose a new method for fast and effective isolation of dsRNA from bacterial culture, as an alternative to classical phenol-chloroform extraction. In our method, phenol is replaced with less toxic methanol, and the total RNA thus isolated from bacteria contains up to 25% of the target molecule lacking the DNA contamination, which enables its usage in certain further applications without additional cleanup steps. The application of this methodology will be justified in laboratories engaged in either fundamental or applied research on RNA interference. However, scaling the technology for agricultural use may require adjustments to the protocol described in this work.
Keywords
двуцепочечная РНК выделение РНК наработка дцРНК в бактериях РНК-интерференция спрей-индуцированный сайленсинг генов
Date of publication
18.12.2024
Year of publication
2024
Number of purchasers
0
Views
13

References

  1. 1. Castel S.E., Martienssen R.A. // Nat. Rev. Genet. 2013. V. 14. P. 100–112. https://doi.org/10.1038/nrg3355
  2. 2. Svoboda P. // Front. Plant Sci. 2020. V. 11. P. 1237. https://doi.org/10.3389/fpls.2020.01237
  3. 3. Li H., Guan R., Guo H., Miao X. // Plant Cell Environ. 2015. V. 38. P. 2277–2285. https://doi.org/10.1111/pce.12546
  4. 4. Islam M.T., Davis Z., Chen L., Englander J., Zomorodi S., Frank J., Bartlett K., Somers E., Carballo S.M., Kester M., Shaked A., Pourtaheri P., Sherif M.S. // Microb. Biotechnol. 2021. V. 14. P. 1847–1856. https://doi.org/10.1111/1751-7915.13699
  5. 5. Kalyandurg P.B., Sundararajan P., Dubey M., Ghadamgah F., Zahid M.A., Whisson S.C., Vetukuri R.R. // Phytopathology. 2021. V. 111. P. 2166–2175. https://doi.org/10.1094/phyto-02-21-0054-sc
  6. 6. Mitter N., Worrall E.A., Robinson K.E., Li P., Jain R.G., Taochy C., Fletcher S.J., Carroll B.J., Lu G.Q. (Max), Xu Z.P. // Nat. Plants. 2017. V. 3. P. 1–10. https://doi.org/10.1038/nplants.2016.207
  7. 7. Islam M.T., Sherif S.M. // Int. J. Mol. Sci. 2020. V. 21. P. 2072. https://doi.org/10.3390/ijms21062072
  8. 8. Konakalla N.C., Bag S., Deraniyagala A.S., Culbreath A.K., Pappu H.R. // Viruses. 2021. V. 13. P. 662. https://doi.org/10.3390/v13040662
  9. 9. Sundaresha S., Sharma S., Bairwa A., Tomar M., Kumar R., Bhardwaj V., Jeevalatha A., Bakade R., Salaria N., Thakur K., Singh B.P., Chakrabarti S.K. // Pest. Manag. Sci. 2022. V. 78. P. 3183–3192. https://doi.org/10.1002/ps.6949
  10. 10. Gan D., Zhang J., Jiang H., Jiang T., Zhu S., Cheng B. // Plant Cell Rep. 2010. V. 29. P. 1261–1268. https://doi.org/10.1007/s00299-010-0911-z
  11. 11. Tenllado F., Martinez-Garcia B., Vargas M., Diaz-Ruiz J.R. // BMC Biotechnol. 2003. V. 3. P. 3. https://doi.org/10.1186/1472-6750-3-3
  12. 12. Ivanov A.A., Golubeva T.S. // J. Fungi. 2023. V. 9. P. 1100. https://doi.org/10.3390/jof9111100
  13. 13. Verdonck T.W., Yanden Broeck J. // Front. Physiol. 2022. V. 13. P. 836106. https://doi.org/10.3389/fphys.2022.836106
  14. 14. Ann S.-J., Donahue K., Koh Y., Martin R.R., Choi M.-Y. // Int. J. Insect Sci. 2019. V. 11. P. 4032. https://doi.org/10.1177/1179543319840323
  15. 15. Wang Z., Li Y., Zhang B., Gao X., Shi M., Zhang S., Zhong S., Zheng Y., Liu X. // Adv. Funct. Mater. 2023. V. 33. P. 3143. https://doi.org/10.1002/adfm.202213143
  16. 16. Guan R., Chu D., Han X., Miao X., Li H. // Front. Bioeng. Biotechnol. 2021. V. 9. P. 3790. https://doi.org/10.3389/fbioe.2021.753790
  17. 17. Strezsak S., Beuning P., Skizim N. // Anal. Methods. 2021. V. 13. P. 179–185. https://doi.org/10.1039/DDAY01498B
  18. 18. Aranda P.S., Lajoie D.M., Joreyk C.L. // Electrophoresis. 2012. V. 33. P. 366–369. https://doi.org/10.1002/elps.20110335
  19. 19. Livshits M.A., Amosova O.A., Lyubchenko Y.L. // J. Biomol. Struct. Dyn. 1990. V. 7. P. 1237–1249. https://doi.org/10.1080/073911102.1990.10508562
  20. 20. Wickham H., Averick M., Bryan J., Chang W., McGowan L.D.A., François R., Grolemund G., Hayes A., Henry L., Hester J., Kuhn M., Pedersen L.T., Miller E., Bache M.S., Muller K., Ooms J., Robinson D., Seidel P.D., Spinu V., Takahashi K., Yanghan D., Wilke C., Woo K., Yutani H. // J. Open Source Softw. 2019. V. 4. P. 1686. https://doi.org/10.21105/joss.01686
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library