ОБНБиоорганическая химия Russian Journal of Bioorganic Chemistry

  • ISSN (Print) 0132-3423
  • ISSN (Online) 1998-2860

ХИМЕРНЫЕ АМИДЫ ЗАМЕЩЕННЫХ АЛЛИЛ- И ФЕНИЛКАРБОНОВЫХ КИСЛОТ С ФАРМАКОФОРНЫМИ ФРАГМЕНТАМИ АРОМАТИЧЕСКИХ И ГЕТЕРОАРОМАТИЧЕСКИХ ЦИКЛОВ – ПОТЕНЦИАЛЬНЫЕ МУЛЬТИТАРГЕТНЫЕ ИНГИБИТОРЫ ПРОТЕИНКИНАЗ: ДИЗАЙН, СИНТЕЗ, ОПРЕДЕЛЕНИЕ ПРОТИВООПУХОЛЕВОЙ АКТИВНОСТИ И АНАЛИЗ IN SILICO

Код статьи
S19982860S0132342325040138-1
DOI
10.7868/S1998286025040138
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 51 / Номер выпуска 4
Страницы
688-705
Аннотация
Современный подход к созданию противораковых лекарственных средств ориентирован на разработку мультитаргетных (многопелевых) ингибиторов опухолевого роста, содержащих в структуре действующего вещества два или более структурно различных фармакофора, способных усиливать терапевтическую эффективность известных противоопухолевых лекарств. В настоящей работе на основе этой стратегии осуществлен дизайн химерных амидов, сочетающих различные комбинации азотсодержащих гетероциклов – 2-ариламинопиримидина, пиридина, пиперазина, хинолина и бензимидазола, представляющих собой ключевые фармакофоры многих противоопухолевых лекарств с различными механизмами действия. Осуществлен синтез сконструированных соединений и определена in vitro их ингибирующая активность против опухолевых клеток линий K562 (хронический миелоидный лейкоз), HL-60 (острый промислоцитарный лейкоз) и HeLa (карцинома шейки матки). В результате тестирования синтезированных амидов на противоопухолевую активность выявлены 5 соединений-лидеров, активных по отношению к исследованным клеточным линиям. Выполнен in silico анализ фармакологических свойств этих молекул и предсказан наиболее вероятный механизм их действия против миелоидных клеток крови K562. На основе совместного анализа экспериментальных и расчетных данных показано, что полученные соединения представляют перспективные базовые структуры для создания новых орально активных противоопухолевых агентов – многоцелевых ингибиторов протеинкиназ.
Ключевые слова
ингибиторы протеинкиназ химерные амиды синтез противоопухолевая активность in silico анализ тирозинкиназа Ber-Abl молекулярный докинг
Дата публикации
12.05.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
12

Библиография

  1. 1. Bridges A.J. // Chem. Rev. 2001. V. 101. P. 2541–2572. https://doi.org/10.1021/cr000250y
  2. 2. Druker B.J. // Adv. Cancer Res. 2004. V. 91. P. 1–30. https://doi.org/10.1016/S0065-230X (04)91001-9
  3. 3. Druker B.J., Guilhot F., O’Brien S.G., Gathmann I., Kantarjian H., Gattermann N., Deininger M.W.N., Silver R.T., Goldman J.M., Stone R.M., Cervantes F., Hochhaus A., Powell B.L., Gabrilove J.L., Rousselot P., Reiffers J., Cornelissen J.J., Hughes T., Agis H., Fischer T., Verhoef G., Shepherd J., Saglio G., Gratwohl A., Nielsen J.L., Radich J.P., Simonsson B., Taylor K., Baccarani M., So C., Letvak L., Larson R.A. // N. Eng. J. Med. 2006. V. 355. P. 2408–2417. https://doi.org/10.1056/NEJMoa062867
  4. 4. Hochhaus A., Larson R.A., Guilhot F., Radich J.P., Branford S., Hughes T.P., Baccarani M., Deininger M.W., Cervantes F., Fujihara S., Ortmann C.-E., Menssen H.D., Kantarjian H., O’Brien S.G., Druker B.J. // N. Eng. J. Med. 2017. V. 376. P. 917–927. https://doi.org/10.1056/NEJMoa1609324
  5. 5. Roskoski J.R. // Pharmacol. Res. 2024. V. 200. P. 106552. https://doi.org/10.1016/j.phys.2022.106552
  6. 6. Cortes J., Lang F. // J. Hematol. Oncol. 2021. V. 14. P. 1–18. https://doi.org/10.1186/s13045-021-01055-9
  7. 7. Tan F.H., Putoczki T.L., Stylii S.S., Luvor R.B. // Onco Targets Ther. 2019. V. 12. P. 635–645. https://doi.org/10.2147/OTTS189391
  8. 8. Ferguson F.M., Gray N.S. // Nat. Rev. Drug Discov. 2018. V. 17. P. 353–377. https://doi.org/10.1038/nrd.2018.21
  9. 9. Patel A.B., O’Hare T., Deininger M.W. // Hematol. Oncol. Clin. North Am. 2017. V. 31. P. 589–612. https://doi.org/10.1016/j.nbc.2017.04.007
  10. 10. Liu J., Zhang Y., Huang H., Lei X., Tang G., Cao X., Peng J. // Chem. Biol. Drug Des. 2021. V. 97. P. 649–664. https://doi.org/10.1111/cbdd.13801
  11. 11. Ma X., Lv X., Zhang J. // Eur. J. Med. Chem. 2018. V. 143. P. 449–463. https://doi.org/10.1016/j.ejmech.2017.11.049
  12. 12. Medina-Franco J.L., Giulianotti M.A., Welmaker G.S., Houghton R.A. // Drug Discov. Today. 2013. V. 18. P. 495–501. https://doi.org/10.1016/j.drudis.2013.01.008
  13. 13. Proschak E., Stark H., Merk D. // J. Med. Chem. 2018. V. 62. P. 420–444. https://doi.org/10.1021/acs.jmedchem.8b00760
  14. 14. Kerru N., Singh P., Koorbanally N., Raj R., Kumar V. // Eur. J. Med. Chem. 2017. V. 142. P. 179–212. https://doi.org/10.1016/j.ejmech.2017.07.033
  15. 15. Koroleva E.V., Ignatovich Z.I., Sinyutich Y.V., Gusak K.N. // Rus. J. Org. Chem. 2016. V. 52. P. 139–177. https://doi.org/10.1134/S1070428016020019
  16. 16. Borsari C., Trader D.J., Tait A., Costi M.P. // J. Med. Chem. 2020. V. 63. P. 1908–1928. https://doi.org/10.1021/acs.jmedchem.9b01456
  17. 17. Tashima T. // Bioorg. Med. Chem. Let. 2018. V. 28. P. 3015–3024. https://doi.org/10.1016/j.bmel.2018.07.012
  18. 18. Schönherr H., Cernak T. // Angew. Chem. Int. Ed. Engl. 2013. V. 52. P. 12256–12267. https://doi.org/10.1002/anie.201303207
  19. 19. Erri P., Altmann E., McKenna J.M. // J. Med. Chem. 2020. V. 63. P. 8408–8418. https://doi.org/10.1021/acs.jmedchem.0c00754
  20. 20. Pennington L.D., Moustakas D.T. // J. Med. Chem. 2017. V. 60. P. 3552–3579. https://doi.org/10.1021/acs.jmedchem.6b01807
  21. 21. Prachayastitikul S., Pingaev R., Worachartcheeva N., Sinthupom N., Prachayastitikul V., Ruchiravat S., Prachayastitikul V. // Mini Rev. Med. Chem. 2017. V. 17. P. 869–901. https://doi.org/10.2174/1389557516666160923125801
  22. 22. Chiacchio M.A., Iannazzo D., Romeo R., Giofré S.V., Legnani L. // Curr. Med. Chem. 2019. V. 26. P. 7166–7195. https://doi.org/10.2174/0929867325666180904125400
  23. 23. Al-Ghorbani M., Gouda M.A., Baashen M., Alharbi O., Almalki F.A., Ranganatha L.V. // Pharm. Chem. J. 2022. V. 56. P. 29–37. https://doi.org/10.1007/s11094-022-02597-z
  24. 24. Garadachari B., Isloor A.M. // Advanced Materials Res. 2014. V. 995. P. 61–84. https://doi.org/10.4028/www.scientific.net/AMR.995.61
  25. 25. Satija G., Sharma B., Madan A., Iqubal A., Shaquiquazaman M., Akhter M., Parvez S., Khan M.A., Alam, M.M. // J. Heterocycl. Chem. 2022. V. 59. P. 22–66. https://doi.org/10.1002/jhet.4355
  26. 26. Yadav S., Narasimhan B. // Anticancer Agents Med. Chem. 2016. V. 16. P. 1403–1425. https://doi.org/10.2174/187152061666151103113412
  27. 27. Meng L., Shan G., Yong W., Xinying Y., Hao F., Xuben H. // J. Med. Chem. 2024. V. 67. P. 15098–15117. https://doi.org/10.1021/acs.jmedchem.4c00729
  28. 28. Feng L.S., Cheng J.B., Su W.Q., Li H.Z., Xiao T., Chen D.A., Zhang Z.L. // Arc. Pharm. (Weinheim). 2022. V. 355. P. e2200052. https://doi.org/10.1002/ardp.202200052
  29. 29. De P., Baltas M., Bedos-Belval F. // Curr. Med. Chem. 2011. V. 18. P. 1672–1703. https://doi.org/10.2174/092986711795471347
  30. 30. Fotopoulos I., Hadjipavlou-Litina D. // Exp. Opin. Drug Discov. 2024. V. 19. P. 1281–1291. https://doi.org/10.1080/17460441.2024.2387122
  31. 31. Koroleva E.V., Ignatovich Zh.V., Ermolinskaya A.L., Sinyutich Yu.V., Tran Q. Toan // Russ. J. Org. Chem. 2021. V. 57. P. 1868–1873. https://doi.org/10.1134/S1070428021110099
  32. 32. Deininger M.W., Vieira S., Mendiola R., Schultheis B., Goldman J.M., Melo J.V. // Cancer Res. 2000. V. 60. P. 2049–2055.
  33. 33. Lipinski C.A. // Drug Discov. Today Technol. 2004. V. 1. P. 337–341. https://doi.org/10.1016/j.ddtec.2004.11.007
  34. 34. Veber D.F., Johnson S.R., Cheng H.Y., Smith B.R., Ward K.W., Kopple K.D. // J. Med. Chem. 2002. V. 45. P. 2615–2623. https://doi.org/10.1021/jm020017n
  35. 35. Lipinski C.A., Lombardo F., Dominy B.W., Feeney P.J. // Adv. Drug Deliv. Rev. 2001. V. 46. P. 3–26. https://doi.org/10.1016/s0169-409x (00)00129-0
  36. 36. Banerjee P., Eckert A.O., Schrey A.K., Preissner R. // Nucl. Acids Res. 2018. V. 46. P.257–263. https://doi.org/10.1093/nar/gky318
  37. 37. Lugo T.G., Pendergast A.M., Muller A.J., Witte O.N. // Science. 1990. V. 247. P. 1079–1082. https://doi.org/10.1126/science.2408149
  38. 38. Trott O. Olson A.J. // J. Comput. Chem. 2010. V. 31. P. 455–461. https://doi.org/10.1002/jcc.21334
  39. 39. Shen C., Hu Y., Wang Z., Zhang X., Zhong H., Wang G., Yao X., Xu L., Cao D., Hou T. // Brief. Bioinf. 2021. V. 22. P. 497–514. https://doi.org/10.1093/bib/bbz173
  40. 40. Durrant J.D., McCammon J.A. // Chem. Inf. Model. 2011. V. 51. P. 2897–2903. https://doi.org/10.1021/ci2003889
  41. 41. Agafonov R.V., Wilson C., Otten R., Buosi V., Kern D. // Nat. Struct. Mol. Biol. 2014. V. 21. P. 848–853. https://doi.org/10.1038/nsmb.2891
  42. 42. Parcha P., Sarvagalla S., Madhuri B., Pajaniradje S., Baskaran V., Coumar M.S., Rajasekaran B. // Chem. Biol. Drug Des. 2017. V. 90. P. 596–608. https://doi.org/10.1111/cbdd.12983
  43. 43. Reddy E.P., Aggarwal A.K. // Genes Cancer. 2012. V. 3. P. 447–454. https://doi.org/10.1177/1947601912462126
  44. 44. Manley P.W., Cowan-Jacob S.W., Fendrich G., Mestan J. // Blood. 2005. V. 106. P. 3365. https://doi.org/10.1182/blood.V106.11.3365.3365
  45. 45. Sobrady F., Bagheri M., Aliyar M., Aryapour H. // J. Mol. Graph. Model. 2017. V. 74. P. 234–240. https://doi.org/10.1016/j.jmgm.2017.04.005
  46. 46. Is Y.S. // J. Comput. Biophys. Chem. 2021. V. 20. P. 433–447. https://doi.org/10.1142/S273741652150023X
  47. 47. Koponescu E.B., Henamoglu R.B., Epuomuecka A.J., Cumomuv IO.B., Raphaoseckai A.B., Maxnav C.A. // Изв. НАН Беларуси. сер. хим. наук. 2013. № 3. С. 79–84.
  48. 48. Petkevich A.V., Siniusch J.V., Martsinkevich D.S., Zdorovets M.V., Shumskaya A.E., Shahab S.N., Filippovich L.N., Ignatovich Zh.V., Rogachev A.A. // Russ. J. Gen. Chem. 2023. V. 93. Suppl. 1. P. S42–S55. https://doi.org/10.1134/S1070363223140402
  49. 49. Koponescu E.B., Henamoglu R.B., Epuomuecka A.J., Aposecka IIIO. // Весш НАН Беларуси. сер. хим. наук. 2015. № 1. С. 63–69.
  50. 50. Huynh T.K.C., Nguyen T., Trand N.H.S., Nguyen T.D., Hoang T.K.D. // J. Chem. Sci. 2020. V.132. P. 84–91. https://doi:10.1007/s12039-020-017834
  51. 51. Al-Nasiry S., Geusens N., Hanssen M., Luyten C., Pijnenhof R. // Hum. Reprod. 2007. V. 22. P. 1304–1309. https://doi.org/10.1093/humrep/dem011
  52. 52. O’Boyle N.M., Bauck M., James C.A., Morley C., Vandermeersch T., Hutchison G.R. // J. Cheminform. 2011. V.3. P. 1–14. https://doi.org/10.1186/1758-2946-3-33
  53. 53. Rappé A.K., Casewit C.J., Colwell K.S., Goddard III W.A., Skiff. W.M. // J. Am. Chem. Soc. 1992. V. 114. P. 10024–10035. https://doi.org/10.1021/ja00051a040
  54. 54. Daina A., Michielin O., Zoete V. // Sci. Rep. 2017. V. 7. P. 42717. https://doi.org/4.2717, 10.1038/srep42717
  55. 55. Durran J.D., McCammon J.A. // J. Mol. Graph. Model. 2011. V. 29. P. 888–893. https://doi.org/10.1016/j.jmgm.2011.01.004
  56. 56. Petersen E.F., Goddard T.D., Huang C.C., Couch G.S., Greenblatt D. M. // J. Comput. Chem., 2004. V. 25. P. 1605–1612. https://doi.org/10.1002/jcc.20084
  57. 57. Laskowski R.A., Swindells M.B. // J. Chem. Inform. Model. 2011. V. 51. P. 2778–2786. https://doi:10.1021/ci200227u
  58. 58. Jimenez J.J., Chale R.S., Abad A.C., Schally A.V. // Oncotarget. 2020. V. 11. P. 992–1003. https://doi.org/10.18632/oncotarget.27513
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека