- PII
- S19982860S0132342325040138-1
- DOI
- 10.7868/S1998286025040138
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 51 / Issue number 4
- Pages
- 688-705
- Abstract
- This study aims to synthesize and evaluate the antitumor efficacy of a series designed chimeric amides (10–14, 16, 19, 21, 25–27, 28, 30) containing various combinations of nitrogen-containing heterocycles, which are the key pharmacophores of many antitumor drugs with different mechanisms of action. The designed amides were synthesized and characterized using spectroscopic techniques. The antitumor activity of all these compounds against tumor cell lines K562 (chronic myeloid leukemia), HL-60 (acute promyelocytic leukemia), and HeLa (cervical carcinoma) was assessed in vitro in terms of the values of half-maximal inhibitory concentration (IC50). As a result, 5 lead compounds, amides (10, 11, 21, 27, 30), active against the above cell lines were identified followed by in silico analysis of their pharmacological properties and prediction of the most probable mechanism of action against myeloid blood cells K562. In light of the data obtained, the identified compounds were shown to form promising basic structures for the design of novel orally active antitumor agents, multi-target protein kinase inhibitors.
- Keywords
- ингибиторы протеинкиназ химерные амиды синтез противоопухолевая активность in silico анализ тирозинкиназа Ber-Abl молекулярный докинг
- Date of publication
- 12.05.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 11
References
- 1. Bridges A.J. // Chem. Rev. 2001. V. 101. P. 2541–2572. https://doi.org/10.1021/cr000250y
- 2. Druker B.J. // Adv. Cancer Res. 2004. V. 91. P. 1–30. https://doi.org/10.1016/S0065-230X (04)91001-9
- 3. Druker B.J., Guilhot F., O’Brien S.G., Gathmann I., Kantarjian H., Gattermann N., Deininger M.W.N., Silver R.T., Goldman J.M., Stone R.M., Cervantes F., Hochhaus A., Powell B.L., Gabrilove J.L., Rousselot P., Reiffers J., Cornelissen J.J., Hughes T., Agis H., Fischer T., Verhoef G., Shepherd J., Saglio G., Gratwohl A., Nielsen J.L., Radich J.P., Simonsson B., Taylor K., Baccarani M., So C., Letvak L., Larson R.A. // N. Eng. J. Med. 2006. V. 355. P. 2408–2417. https://doi.org/10.1056/NEJMoa062867
- 4. Hochhaus A., Larson R.A., Guilhot F., Radich J.P., Branford S., Hughes T.P., Baccarani M., Deininger M.W., Cervantes F., Fujihara S., Ortmann C.-E., Menssen H.D., Kantarjian H., O’Brien S.G., Druker B.J. // N. Eng. J. Med. 2017. V. 376. P. 917–927. https://doi.org/10.1056/NEJMoa1609324
- 5. Roskoski J.R. // Pharmacol. Res. 2024. V. 200. P. 106552. https://doi.org/10.1016/j.phys.2022.106552
- 6. Cortes J., Lang F. // J. Hematol. Oncol. 2021. V. 14. P. 1–18. https://doi.org/10.1186/s13045-021-01055-9
- 7. Tan F.H., Putoczki T.L., Stylii S.S., Luvor R.B. // Onco Targets Ther. 2019. V. 12. P. 635–645. https://doi.org/10.2147/OTTS189391
- 8. Ferguson F.M., Gray N.S. // Nat. Rev. Drug Discov. 2018. V. 17. P. 353–377. https://doi.org/10.1038/nrd.2018.21
- 9. Patel A.B., O’Hare T., Deininger M.W. // Hematol. Oncol. Clin. North Am. 2017. V. 31. P. 589–612. https://doi.org/10.1016/j.nbc.2017.04.007
- 10. Liu J., Zhang Y., Huang H., Lei X., Tang G., Cao X., Peng J. // Chem. Biol. Drug Des. 2021. V. 97. P. 649–664. https://doi.org/10.1111/cbdd.13801
- 11. Ma X., Lv X., Zhang J. // Eur. J. Med. Chem. 2018. V. 143. P. 449–463. https://doi.org/10.1016/j.ejmech.2017.11.049
- 12. Medina-Franco J.L., Giulianotti M.A., Welmaker G.S., Houghton R.A. // Drug Discov. Today. 2013. V. 18. P. 495–501. https://doi.org/10.1016/j.drudis.2013.01.008
- 13. Proschak E., Stark H., Merk D. // J. Med. Chem. 2018. V. 62. P. 420–444. https://doi.org/10.1021/acs.jmedchem.8b00760
- 14. Kerru N., Singh P., Koorbanally N., Raj R., Kumar V. // Eur. J. Med. Chem. 2017. V. 142. P. 179–212. https://doi.org/10.1016/j.ejmech.2017.07.033
- 15. Koroleva E.V., Ignatovich Z.I., Sinyutich Y.V., Gusak K.N. // Rus. J. Org. Chem. 2016. V. 52. P. 139–177. https://doi.org/10.1134/S1070428016020019
- 16. Borsari C., Trader D.J., Tait A., Costi M.P. // J. Med. Chem. 2020. V. 63. P. 1908–1928. https://doi.org/10.1021/acs.jmedchem.9b01456
- 17. Tashima T. // Bioorg. Med. Chem. Let. 2018. V. 28. P. 3015–3024. https://doi.org/10.1016/j.bmel.2018.07.012
- 18. Schönherr H., Cernak T. // Angew. Chem. Int. Ed. Engl. 2013. V. 52. P. 12256–12267. https://doi.org/10.1002/anie.201303207
- 19. Erri P., Altmann E., McKenna J.M. // J. Med. Chem. 2020. V. 63. P. 8408–8418. https://doi.org/10.1021/acs.jmedchem.0c00754
- 20. Pennington L.D., Moustakas D.T. // J. Med. Chem. 2017. V. 60. P. 3552–3579. https://doi.org/10.1021/acs.jmedchem.6b01807
- 21. Prachayastitikul S., Pingaev R., Worachartcheeva N., Sinthupom N., Prachayastitikul V., Ruchiravat S., Prachayastitikul V. // Mini Rev. Med. Chem. 2017. V. 17. P. 869–901. https://doi.org/10.2174/1389557516666160923125801
- 22. Chiacchio M.A., Iannazzo D., Romeo R., Giofré S.V., Legnani L. // Curr. Med. Chem. 2019. V. 26. P. 7166–7195. https://doi.org/10.2174/0929867325666180904125400
- 23. Al-Ghorbani M., Gouda M.A., Baashen M., Alharbi O., Almalki F.A., Ranganatha L.V. // Pharm. Chem. J. 2022. V. 56. P. 29–37. https://doi.org/10.1007/s11094-022-02597-z
- 24. Garadachari B., Isloor A.M. // Advanced Materials Res. 2014. V. 995. P. 61–84. https://doi.org/10.4028/www.scientific.net/AMR.995.61
- 25. Satija G., Sharma B., Madan A., Iqubal A., Shaquiquazaman M., Akhter M., Parvez S., Khan M.A., Alam, M.M. // J. Heterocycl. Chem. 2022. V. 59. P. 22–66. https://doi.org/10.1002/jhet.4355
- 26. Yadav S., Narasimhan B. // Anticancer Agents Med. Chem. 2016. V. 16. P. 1403–1425. https://doi.org/10.2174/187152061666151103113412
- 27. Meng L., Shan G., Yong W., Xinying Y., Hao F., Xuben H. // J. Med. Chem. 2024. V. 67. P. 15098–15117. https://doi.org/10.1021/acs.jmedchem.4c00729
- 28. Feng L.S., Cheng J.B., Su W.Q., Li H.Z., Xiao T., Chen D.A., Zhang Z.L. // Arc. Pharm. (Weinheim). 2022. V. 355. P. e2200052. https://doi.org/10.1002/ardp.202200052
- 29. De P., Baltas M., Bedos-Belval F. // Curr. Med. Chem. 2011. V. 18. P. 1672–1703. https://doi.org/10.2174/092986711795471347
- 30. Fotopoulos I., Hadjipavlou-Litina D. // Exp. Opin. Drug Discov. 2024. V. 19. P. 1281–1291. https://doi.org/10.1080/17460441.2024.2387122
- 31. Koroleva E.V., Ignatovich Zh.V., Ermolinskaya A.L., Sinyutich Yu.V., Tran Q. Toan // Russ. J. Org. Chem. 2021. V. 57. P. 1868–1873. https://doi.org/10.1134/S1070428021110099
- 32. Deininger M.W., Vieira S., Mendiola R., Schultheis B., Goldman J.M., Melo J.V. // Cancer Res. 2000. V. 60. P. 2049–2055.
- 33. Lipinski C.A. // Drug Discov. Today Technol. 2004. V. 1. P. 337–341. https://doi.org/10.1016/j.ddtec.2004.11.007
- 34. Veber D.F., Johnson S.R., Cheng H.Y., Smith B.R., Ward K.W., Kopple K.D. // J. Med. Chem. 2002. V. 45. P. 2615–2623. https://doi.org/10.1021/jm020017n
- 35. Lipinski C.A., Lombardo F., Dominy B.W., Feeney P.J. // Adv. Drug Deliv. Rev. 2001. V. 46. P. 3–26. https://doi.org/10.1016/s0169-409x (00)00129-0
- 36. Banerjee P., Eckert A.O., Schrey A.K., Preissner R. // Nucl. Acids Res. 2018. V. 46. P.257–263. https://doi.org/10.1093/nar/gky318
- 37. Lugo T.G., Pendergast A.M., Muller A.J., Witte O.N. // Science. 1990. V. 247. P. 1079–1082. https://doi.org/10.1126/science.2408149
- 38. Trott O. Olson A.J. // J. Comput. Chem. 2010. V. 31. P. 455–461. https://doi.org/10.1002/jcc.21334
- 39. Shen C., Hu Y., Wang Z., Zhang X., Zhong H., Wang G., Yao X., Xu L., Cao D., Hou T. // Brief. Bioinf. 2021. V. 22. P. 497–514. https://doi.org/10.1093/bib/bbz173
- 40. Durrant J.D., McCammon J.A. // Chem. Inf. Model. 2011. V. 51. P. 2897–2903. https://doi.org/10.1021/ci2003889
- 41. Agafonov R.V., Wilson C., Otten R., Buosi V., Kern D. // Nat. Struct. Mol. Biol. 2014. V. 21. P. 848–853. https://doi.org/10.1038/nsmb.2891
- 42. Parcha P., Sarvagalla S., Madhuri B., Pajaniradje S., Baskaran V., Coumar M.S., Rajasekaran B. // Chem. Biol. Drug Des. 2017. V. 90. P. 596–608. https://doi.org/10.1111/cbdd.12983
- 43. Reddy E.P., Aggarwal A.K. // Genes Cancer. 2012. V. 3. P. 447–454. https://doi.org/10.1177/1947601912462126
- 44. Manley P.W., Cowan-Jacob S.W., Fendrich G., Mestan J. // Blood. 2005. V. 106. P. 3365. https://doi.org/10.1182/blood.V106.11.3365.3365
- 45. Sobrady F., Bagheri M., Aliyar M., Aryapour H. // J. Mol. Graph. Model. 2017. V. 74. P. 234–240. https://doi.org/10.1016/j.jmgm.2017.04.005
- 46. Is Y.S. // J. Comput. Biophys. Chem. 2021. V. 20. P. 433–447. https://doi.org/10.1142/S273741652150023X
- 47. Koponescu E.B., Henamoglu R.B., Epuomuecka A.J., Cumomuv IO.B., Raphaoseckai A.B., Maxnav C.A. // Изв. НАН Беларуси. сер. хим. наук. 2013. № 3. С. 79–84.
- 48. Petkevich A.V., Siniusch J.V., Martsinkevich D.S., Zdorovets M.V., Shumskaya A.E., Shahab S.N., Filippovich L.N., Ignatovich Zh.V., Rogachev A.A. // Russ. J. Gen. Chem. 2023. V. 93. Suppl. 1. P. S42–S55. https://doi.org/10.1134/S1070363223140402
- 49. Koponescu E.B., Henamoglu R.B., Epuomuecka A.J., Aposecka IIIO. // Весш НАН Беларуси. сер. хим. наук. 2015. № 1. С. 63–69.
- 50. Huynh T.K.C., Nguyen T., Trand N.H.S., Nguyen T.D., Hoang T.K.D. // J. Chem. Sci. 2020. V.132. P. 84–91. https://doi:10.1007/s12039-020-017834
- 51. Al-Nasiry S., Geusens N., Hanssen M., Luyten C., Pijnenhof R. // Hum. Reprod. 2007. V. 22. P. 1304–1309. https://doi.org/10.1093/humrep/dem011
- 52. O’Boyle N.M., Bauck M., James C.A., Morley C., Vandermeersch T., Hutchison G.R. // J. Cheminform. 2011. V.3. P. 1–14. https://doi.org/10.1186/1758-2946-3-33
- 53. Rappé A.K., Casewit C.J., Colwell K.S., Goddard III W.A., Skiff. W.M. // J. Am. Chem. Soc. 1992. V. 114. P. 10024–10035. https://doi.org/10.1021/ja00051a040
- 54. Daina A., Michielin O., Zoete V. // Sci. Rep. 2017. V. 7. P. 42717. https://doi.org/4.2717, 10.1038/srep42717
- 55. Durran J.D., McCammon J.A. // J. Mol. Graph. Model. 2011. V. 29. P. 888–893. https://doi.org/10.1016/j.jmgm.2011.01.004
- 56. Petersen E.F., Goddard T.D., Huang C.C., Couch G.S., Greenblatt D. M. // J. Comput. Chem., 2004. V. 25. P. 1605–1612. https://doi.org/10.1002/jcc.20084
- 57. Laskowski R.A., Swindells M.B. // J. Chem. Inform. Model. 2011. V. 51. P. 2778–2786. https://doi:10.1021/ci200227u
- 58. Jimenez J.J., Chale R.S., Abad A.C., Schally A.V. // Oncotarget. 2020. V. 11. P. 992–1003. https://doi.org/10.18632/oncotarget.27513