- PII
- S19982860S0132342325040091-1
- DOI
- 10.7868/S1998286025040091
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 51 / Issue number 4
- Pages
- 644-653
- Abstract
- The determination of bioavailability during the study of the therapeutic potential of plant extracts is extremely important because it serves as an indicator of whether the original compounds will retain their biological activity or gradually lose it under the influence of multiple factors. Rosemary (Rosmarinus officinalis L.) is the source with the highest percentage of the pentacyclic triterpenoid ursolic acid, while ecdystene (20-hydroxyecdysterone) is one of the main phytoecdysteroids present in leuzea (Rhaponicum carthamoides Willd.). Both plant sources are distributed on the pharmaceutical market in the form of food and dietary supplements as metabolic therapy agents. However, there is still little information on the pharmacokinetic profile of ecdystene and ursolic acid in extracts and multicomponent compositions. In this paper, we carried out a comparative evaluation of pharmacokinetic parameters of ecdystene, ursolic acid, extracts of leuzea and rosemary, composition based on the two extracts in blood during per os administration in vivo. Methods: The investigated substances and their extracts were administered once, intragastrically to CD-1 outbred mice in doses equivalent in quantitative content of the main active substance. The content of ursolic acid and ecdystene in animal blood was determined by HPLC-MS/MS for subsequent calculation of pharmacokinetic parameters (C, T, AUC). Results: In both cases there was a decrease in bioavailability of ursolic acid and ecdystene in the blood of experimental animals in comparison with individual substances. In the composition, only trace amounts of ecdystene were determined, while no differences in pharmacokinetic parameters of ursolic acid in the composition and rosemary extract were found. Conclusions: This study proves that the combination of plant extracts in the form of multicomponent mixtures can lead to a decrease in bioavailability of the main active substances by many different factors. The development of products based on plant extracts should be accompanied by pharmacokinetic studies to prove the quality of the finished product.
- Keywords
- урословая кислота экдистен экстракт Rosmarinus officinalis Rhaponicum carthamoides фармакокинетика мыши
- Date of publication
- 24.12.2024
- Year of publication
- 2024
- Number of purchasers
- 0
- Views
- 11
References
- 1. Физуллия О.Ф., Льновина М.Н. // Ползунововский вестник. 2018. № 4. С. 89–94. https://doi.org/10.25712/ASTU.2072-8921.2018.04.018
- 2. Dima C., Assadpour E., Dima S., Jafari S.M. // Compr. Rev. Food Sci. Food Saf. 2020. V. 19. P. 954–994. https://doi.org/10.1111/1541-4337.12547
- 3. Thakur N., Raigond P., Singh Y., Mishra T., Singh B., Lal M.K., Dutt S. // Trends Food Sci. Technol. 2020. V. 97. P. 366–380. https://doi.org/10.1016/j.tifs.2020.01.019
- 4. Liu Y., Xia H., Guo S., Li P., Qin S., Shi M., Zeng C. // Food Chem. 2023. V. 423. P. 136220. https://doi.org/10.1016/j.foodchem.2023.136220
- 5. Kunkel S.D., Suneja M., Ebert S.M., Bongers K.S., Fox D.K., Malmberg S.E., Alipour F., Shields R.K., Adams C.M. // Cell Metab. 2011. V. 13. P. 627–638. https://doi.org/10.1016/j.cmet.2011.03.020
- 6. Rai S.N., Yadav S.K., Singh D., Singh S.P. // J. Chem. Neuroanat. 2016. V. 71. P. 41–49. https://doi.org/10.1016/j.jchemneu.2015.12.002
- 7. Wang L., Wang G.L., Liu J.H., Li D., Zhu D.Z., Wu L.N. // Chin. J. Integr. Med. 2012. V. 10. P. 793–799. https://doi.org/10.3736/jcim20120710
- 8. Liu Y., Zheng J.Y., Wei Z.T., Liu S.K., Sun J.L., Mao Y.H., Xu Y.D., Yang Y. // Front. Pharmacol. 2022. V. 13. P. 969207. https://doi.org/10.3389/fphar.2022.969207
- 9. Kornel A., Nadlie M., Reisidou M.I., Sakellakis M., Giori K., Beloukas A., Sze N.S.K., Klentrou P., Tsiani E. // Int. J. Mol. Sci. 2023. V. 24. P. 7414. https://doi.org/10.3390/ijms24087414
- 10. Chan E.W.C., Soon C.Y., Tan J.B.L., Wong S.K., Hui Y.W. // J. Integr. Med. 2019. V. 17. P. 155–160. https://doi.org/10.1016/j.joim.2019.03.003
- 11. Wozniak L., Szakiel A., Glowacka A., Rozpara E., Marszalek K., Skapska S. // Molecules. 2023. V. 28. P. 2584. https://doi.org/10.3390/molecules28062584
- 12. Jager S., Trojan H., Kopp T., Laszczyk M.N., Scheffler A. // Molecules. 2009. V. 14. P. 2016–2031. https://doi.org/10.3390/molecules14062016
- 13. Todorova V., Ivanova S., Chakarov D., Kraev K., Ivanov K. // Nutrients. 2024. V. 16. P. 1382. https://doi.org/10.3390/nu16091382
- 14. Budesinsky M., Vokác K., Harmatha J., Cvacka J. // Steroids. 2008. V. 73. P. 502–514. https://doi.org/10.1016/j.steroids.2007.12.021
- 15. Cheng D.M., Kutzler L.W., Boler D.D., Drnevich J., Killefer J., Lila M.A. // Phytother. Res. 2013. V. 27. P. 107–111. https://doi.org/10.1002/ptr.4679
- 16. Kokoska L., Janovska D. // Phytochemistry. 2009. V. 70. P. 842–855. https://doi.org/10.1016/j.phytochem.2009.04.008
- 17. Ambrosio G., Joseph J.F., Wuest B., Mazzarino M., de la Torre X., Diel P., Boiré F., Parr M.K. // Steroids. 2020. V. 157. P. 108603. https://doi.org/10.1016/j.steroids.2020.108603
- 18. Dioh W., Tourette C., Del Signore S., Daudigny L., Dupont P., Balducci C., Dilda P.J., Lafont R., Veillet S. // J. Cachexia Sarcopenia Muscle. 2023. V. 14. P. 1259–1273. https://doi.org/10.1002/jcsm.13195
- 19. Kraiem S., Al-Jaber M.Y., Al-Mohammed H., Al-Menhali A.S., Al-Thani N., Helaleh M., Samsam W., Touil S., Beotra A., Georgakopoulas C., Bouabdallah S., Mohamed-Ali Y., Al Maadheed M. // Drug Test Anal. 2021. V. 113. P. 1341–1353. https://doi.org/10.1002/dta.3032
- 20. Wang X.H., Zhou S.Y., Qian Z.Z., Zhang H.L., Qiu L.H., Song Z., Zhao J., Wang P., Hao X.S., Wang H.Q. // Expert Opin. Drug Metab. Toxicol. 2013. V. 9. P. 117–125. https://doi.org/10.1517/17425255.2013.738667
- 21. Zhu Z., Qian Z., Yan Z., Zhao C., Wang H., Ying G. // Int. J. Nanomedicine. 2013. V. 8. P. 129–136. https://doi.org/10.2147/IJN.S38271
- 22. Qian Z., Wang X., Song Z., Zhang H., Zhou S., Zhao J., Wang H. // Biomed. Res. Int. 2015. V. 2015. P. 809714. https://doi.org/10.1155/2015/809714
- 23. Chen Q., Luo S., Zhang Y., Chen Z. // Anal. Bioanal. Chem. 2011. V. 399. P. 2877–2884. https://doi.org/10.1007/s00216-011-4651-x
- 24. Zhang C., Wang C., Li W., Wu R., Guo Y., Cheng D., Yang Y., Androulakis I.P., Kong A.N. // Mol. Pharm. 2017. V. 14. P. 3709–3717. https://doi.org/10.1021/acs.molpharmaceut.7b00469
- 25. Younige A.B., Ихалайнен А.А., Максимов В.А. // Фармакология. 2014. № 15. С. 250–262.
- 26. Lafont R., Dilda P., Dupont P., Signore S.D., Veillet S. // Patent FR 3065644 A1, 2020.
- 27. Namdeo P., Gidwani B., Tiwari S., Jain V., Joshi V., Shukla S.S., Pandey R.K., Vyss A. // J. Sci. Food Agric. 2023. V. 103. P. 4275–4292. https://doi.org/10.1002/jsfa.12423
- 28. Epимбенов К.Т., Федорова А.В., Гончарова А.Я., Бондаренко Е.В. // Проблемы биологии продуктивных животных. 2020. № 3. С. 106–113. https://doi.org/10.25687/1996-6733.prodanimbiol.2020.3.106-113
- 29. Dinan L., Balducci C., Guibout L., Foucault A.S., Bakrim A., Kumpun S., Girault J.P., Tourette C., Dioh W., Dilda P.J., Veillet S., Lafont R. // J. Steroid Biochem. Mol. Biol. 2021. V. 212. P. 105896. https://doi.org/10.1016/j.jsbmb.2021.105896
- 30. Tai M.M. // Diabetes Care. 1994. V. 17. P. 152–154. https://doi.org/10.2337/diacare.17.2.152