RAS BiologyБиоорганическая химия Russian Journal of Bioorganic Chemistry

  • ISSN (Print) 0132-3423
  • ISSN (Online) 1998-2860

Effect of Different Coatings on Immobilization of Biomolecules in Brush Polymer Cells

PII
S19982860S0132342325030062-1
DOI
10.7868/S1998286025030062
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 51 / Issue number 3
Pages
432-443
Abstract
Biochips with protein and oligonucleotide probes are used to analyze protein and nucleic acid samples. The key challenges of the technology are the selection of substrate materials and surface functionalization. Polybutylene terephthalate substrates were modified by coating them with photoactive polymers: poly(ethylene-co-propylene-co-5-methylene-2-norbornene), acetylcellulose, polyvinyl acetate and polyvinyl butyral. The coatings were applied by centrifugation and dried. The effect of the coating on the biochip characteristics was investigated. A matrix of hydrophilic cells made of brush polymers with epoxy groups for immobilization of DNA probes and human immunoglobulins was prepared by photoinitiated radical polymerization. The functionality of probes was investigated by hybridization analysis and reaction with specific antibodies. The binding efficiency of probes to molecular targets was evaluated on biochips with different coatings. Cells on substrates coated with polyvinyl butyral and poly(ethylene-co-propylene-co-5-methylene-2-norbornene) showed the best binding efficiency and weak adsorption of targets, providing high contrast fluorescence images after probe binding. Biochips on such substrates are promising for lab-on-a-chip microanalysis technology.
Keywords
полимерные поверхности биочипы щеточные полимеры иммобилизация олигонуклеотидных зондов иммобилизация белков гибридизационный анализ флуоресцентный иммуноанализ
Date of publication
07.12.2025
Year of publication
2025
Number of purchasers
0
Views
5

References

  1. 1. Stumpf A., Brandstetter T., Hübner J., Rühe J. // PLoS One. 2019. V. 14. P. e0225525. https://doi.org/10.1371/journal.pone.0225525
  2. 2. Gryadunov D., Dementieva E., Mikhailovich V., Nasedkina T., Rubina A., Savvateeva E., Fesenko E., Chudinov A., Zimenkov D., Kolchinsky A., Zasedatelev A. // Exp. Rev. Mol. Diagn. 2011. V. 11. P. 839- 853. https://doi.org/10.1586/erm.11.73
  3. 3. Mateo C., Fernández-Lorente G., Abian O., Fernández-Lafuente R., Guisán J.M. // Biomacromolecules. 2000. V. 1. P. 739-745. https://doi.org/10.1021/bm000071q
  4. 4. Chi Q., Zhang J., Andersen J.E., Ulstrup J. // J. Phys. Chem. B. 2001. V. 105. P. 4669-4679. https://doi.org/10.1021/jp0105589
  5. 5. Sullivan T.P., Huck W.T. // Eur. J. Org. Chem. 2002. V. 2003. P. 17-29. https://doi.org/10.1002/1099-0690 (200301)2003:1%3C17::AID-EJOC17%3E3.0.CO;2-H
  6. 6. Zhi Z.L., Powell A.K., Turnbull J.E. // Anal. Chem. 2006. V. 78. P. 4786-4793. https://doi.org/10.1021/ac060084f
  7. 7. Yi S.S., Noh J.M., Lee Y.S. // J. Mol. Catal. B Enzym. V. 57. P. 123-129. https://doi.org/10.1016/j.molcatb.2008.08.002
  8. 8. Singh V., Ahmad S. // Cellulose. 2012. V. 19. P. 1759-1769. https://doi.org/10.1007/s10570-012-9749-6
  9. 9. Akkoyun A., Bilitewski U. // Biosens. Bioelectron. 2002. V. 17. P. 655-664. https://doi.org/10.1016/s0956-5663 (02)00029-5
  10. 10. Guerrero C., Vera C., Serna N., Illanes A. // Bioresour. Technol. 2017. V. 232. P. 53-63. https://doi.org/10.1016/j.biortech.2017.02.003
  11. 11. Kobayashi H., Ikada Y. // Biomaterials. 1991. V. 12. P. 747-751. https://doi.org/10.1016/0142-9612 (91)90024-5
  12. 12. Isobe N., Lee D.S., Kwon Y.J., Kimura S., Kuga S., Wada M., Kim U.J. // Cellulose. 2011. V. 18. P. 1251- 1256. https://doi.org/10.1007/s10570-011-9561-8
  13. 13. Mueller M., Bandl C., Kern W. // Polymers. 2022. V. 14. P. 608. https://doi.org/10.3390/polym14030608
  14. 14. Zhao B., Brittain W.J. // Progr. Polym. Sci. 2000. V. 25. P. 677-710. https://doi.org/10.1016/S0079-6700 (00)00012-5
  15. 15. Miftakhov R.A., Ikonnikova A.Yu., Vasiliskov V.A., Lapa S.A., Levashova A.I., Kuznetsova V.E., Shershov V.E., Zasedatelev A.S., Nasedkina T.V., Chudinov A.V. // Russ. J. Bioorg. Chem. 2023. V. 49. P. 1143-1150. https://doi.org/10.1134/S1068162023050217
  16. 16. Shaskolskiy B., Kandinov I., Kravtsov D., Vinokurova A., Gorshkova S., Filippova M., Kubanov A., Solomka V., Deryabin D., Dementieva E., Gryadunov D. // Polymers. 2021. V. 13. P. 3889. https://doi.org/10.3390/polym13223889
  17. 17. Shtylev G.F., Shishkin I.Yu., Shershov V.E., Kuznetsova V.E., Kachulyak D.A., Butvilovskaya V.I., Levashova A.I., Vasiliskov V.A., Zasedateleva O.A., Chudinov A.V. // Russ. J. Bioorg. Chem. 2024. V. 50. P. 2036-2049. https://doi.org/10.1134/S106816202405033
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library