ОБНБиоорганическая химия Russian Journal of Bioorganic Chemistry

  • ISSN (Print) 0132-3423
  • ISSN (Online) 1998-2860

Влияние модификаций цитоскелетного белка зиксина на его внутриклеточное распределение на модели эмбрионов шпорцевой лягушки Xenopus laevis

Код статьи
S1998286025020118-1
DOI
10.7868/S1998286025020118
Тип публикации
Обзор
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 51 / Номер выпуска 2
Страницы
329-341
Аннотация
Зиксин – консервативный механочувствительный LIM-доменный белок, регулирующий сборку F-актиновых филаментов в клеточных контактах. В то же время в ответ на растяжение клеток зиксин может перемещаться в ядро и регулировать экспрессию генов. Это перемещение может регулироваться его посттрансляционными модификациями. Поскольку зиксин признан онкомаркером, изучение модификаций этого белка и механизмов его перемещения между ядром и цитоплазмой открывает возможности для диагностических исследований на молекулярном уровне. С использованием модельного организма, эмбрионов шпорцевой лягушки (Xenopus laevis) на стадии гаструлы, было показано влияние направленного мутагенеза по сайтам пальмитилирования, глюкозаминилирования, а также по N- и С-концевым аминокислотным остаткам на способность зиксина перемещаться в ядро. Показано, что направленный мутагенез сайтов возможного пальмитилирования приводит к уменьшению количества зиксина в ядре, а мутирование аминокислот, подвергающихся глюкозаминилированию, наоборот, приводит к увеличению количества зиксина в ядре. Также было показано, что добавление Flag-эпитопа на С-конец молекулы зиксина приводит к утрате его способность к перемещению в ядро. Полученные данные впервые, насколько нам известно, свидетельствуют о влиянии указанных модификаций на перемещение зиксина и дополняют мировые исследования о механизмах изменения локализации механочувствительных белков семейства зиксина. Помимо фундаментального значения, эти данные могут иметь перспективную ценность и для биомедицинских исследований, в особенности учитывая тот факт, что нарушение внутриклеточной локализации зиксин-подобных белков приводит к образованию раковых опухолей и заболеваний сердечно-сосудистой системы.
Ключевые слова
изоформы белка развитие внутриклеточная локализация зиксин модификации протеолиз
Дата публикации
30.12.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
55

Библиография

  1. 1. Nix D.A., Beckerle M.C. // J. Cell Biol. 1997. V. 138. P. 1139–1147. https://doi.org/10.1083/jcb.138.5.1139
  2. 2. Cerisano V., Aalto Y., Perdichizzi S., Bernard G., Manara M.C., Benini S., Cenacchi G., Preda P., Lattanzi G., Nagy B., Knuutila S., Colombo M.P., Bernard A., Picci P., Scotlandi K. // Oncogene. 2004. V. 23. P. 5664–5674. https://doi.org/10.1038/sj.onc.1207741
  3. 3. Ermolina L.V., Martynova N.Iu., Zaraĭskiĭ A.G. // Russ. J. Bioorg. Chem. 2010. V. 36. P. 24–31. https://doi.org/10.1134/s1068162010010036
  4. 4. Martynova N.Y., Parshina E.A., Zaraisky A.G. // FEBS J. 2023. V. 290. P. 66–72. https://doi.org/10.1111/febs.16308
  5. 5. Martynova N.Y., Ermolina L.V., Ermakova G.V., Eroshkin F.M., Gyoeva F.K., Baturina N.S., Zaraisky A.G. // Dev. Biol. 2013. V. 380. P. 37–48. https://doi.org/10.1016/j.ydbio.2013.05.005
  6. 6. Wu Z., Wu D., Zhong Q., Zou X., Liu Z., Long H., Wei J., Li X., Dai F. // Front. Mol. Biosci. 2024. V. 11. P. 1371549. https://doi.org/10.3389/fmolb.2024.1371549
  7. 7. Wang Y.X., Wang D.Y., Guo Y.C., Guo J. // Eur. Rev. Med. Pharmacol. Sci. 2019. V. 23. P. 413–425. https://doi.org/10.26355/eurrev_201901_16790
  8. 8. Rauskolb C., Pan G., Reddy B.V., Oh H., Irvine K.D. // PLoS Biol. 2011. V. 9. P. e1000624. https://doi.org/10.1371/journal.pbio.1000624
  9. 9. Suresh Babu S., Wojtowicz A., Freichel M., Birnbaumer L., Hecker M., Cattaruzza M. // Sci. Signal. 2012. V. 5. P. ra91. https://doi.org/10.1126/scisignal.2003173
  10. 10. Beckerle M.C. // J. Cell Biol. 1986. V. 103. P. 1679– 1687. https://doi.org/10.1083/jcb.103.5.1679.
  11. 11. Crawford A.W., Beckerle M.C. // J. Biol. Chem. 1991. V. 266. P. 5847–5853. https://doi.org/10.1083/jcb.119.6.1573
  12. 12. Hirata H., Tatsumi H., Sokabe M.. // J. Cell Sci. 2008. V. 121. P. 2795–2804. https://doi.org/10.1242/jcs.030320
  13. 13. Sadler I., Crawford A.W., Michelsen J.W., Beckerle M.C. // J. Cell Biol. 1992. V. 119. P. 1573–1587. https://doi.org/10.1083/jcb.119.6.1573
  14. 14. Pérez-Alvarado G.C., Miles C., Michelsen J.W., Louis H.A., Winge D.R., Beckerle M.C., Summers M.F. // Nat. Struct. Biol. 1994. V. 1. P. 388–398. https://doi.org/10.1038/nsb0694-388
  15. 15. Schmeichel K.L., Beckerle M.C. // Cell. 1994. V. 79. P. 211–219. https://doi.org/10.1016/0092-8674 (94)90191-0
  16. 16. Schmeichel K.L., Beckerle M.C. // Biochem. J. 1998. V. 331. P. 885–892. https://doi.org/10.1042/bj3310885
  17. 17. Beckerle M.C. // Bioessays. 1997. V. 19. P. 949–957. https://doi.org/10.1002/bies.950191104.
  18. 18. Kadrmas J.L., Beckerle M.C. // Nat. Rev. Mol. Cell Biol. 2004. V. 5. P. 920–931. https://doi.org/10.1038/nrm1499
  19. 19. Steele A.N., Sumida G.M., Yamada S. // Biochem. Biophys. Res. Commun. 2012. V. 422. P. 653–657. https://doi.org/10.1016/j.bbrc.2012.05.046
  20. 20. Burridge K., Wittchen E.S. // J. Cell Biol. 2013. V. 200. P. 9–19. https://doi.org/10.1083/jcb.201210090
  21. 21. Mori M., Nakagami H., Koibuchi N., Miura K., Takami Y., Koriyama H., Hayashi H., Sabe H., Mochizuki N., Morishita R., Kaneda Y. // Mol. Biol. Cell. 2009. V. 20. P. 3115–3124. https://doi.org/10.1091/mbc.e09-01-0046
  22. 22. Call G.S., Chung J.Y., Davis J.A., Price B.D., Primavera T.S., Thomson N.C., Wagner M.V., Hansen M.D. // Biochem. Biophys. Res. Commun. 2011. V. 404. P. 780–784. https://doi.org/10.1016/j.bbrc.2010.12.058
  23. 23. Moody J.D., Grange J., Ascione M.P., Boothe D., Bushnell E., Hansen M.D. // Biochem. Biophys. Res. Commun. 2009. V. 378. P. 625–628. https://doi.org/10.1016/j.bbrc.2008.11.100
  24. 24. Fujita Y., Yamaguchi A., Hata K., Endo M., Yamaguchi N., Yamashita T. // BMC Cell Biol. 2009. V. 10. P. 6. https://doi.org/10.1186/1471-2121-10-6
  25. 25. Zhao Y., Yue S., Zhou X., Guo J., Ma S., Chen Q. // J. Biol. Chem. 2022. V. 298. P. 101776. https://doi.org/10.1016/j.jbc.2022.101776
  26. 26. Oku S., Takahashi N., Fukata Y., Fukata M. // J. Biol. Chem. 2013. V. 288. P. 19816–19829. https://doi.org/10.1074/jbc.M112.431676
  27. 27. Ivanova E.D., Parshina E.A., Zaraisky A.G., Martynova N.Y. // Russ. J. Bioorg. Chem. 2024. V. 50. P. 723–732. https://doi.org/10.1134/s1068162024030026
  28. 28. Sabino F., Madzharova E., Auf dem Keller U. // Cell Death Dis. 2020. V. 11. P. 674. https://doi.org/10.1038/s41419-020-02883-2
  29. 29. Martynova N.Y., Eroshkin F.M., Ermolina L.V., Ermakova G.V., Korotaeva A.L., Smurova K.M., Gyoeva F.K., Zaraisky A.G. // Dev. Dyn. 2008. V. 237. P. 736–749. https://doi.org/10.1002/dvdy.21471
  30. 30. Martynova N.Y., Parshina E.A., Zaraisky A.G. // STAR Protoc. 2021. V. 2. P. 100449. https://doi.org/10.1016/j.xpro.2021.100449
  31. 31. Linder M.E., Deschenes R.J. // Nat. Rev. Mol. Cell Biol. 2007. V. 8. P. 74–84. https://doi.org/10.1038/nrm2084
  32. 32. el-Husseini Ael-D, Bredt D.S. // Nat. Rev. Neurosci. 2002. V. 3. P. 791–802. https://doi.org/10.1038/nrn940
  33. 33. Fukata Y., Fukata M. // Nat. Rev. Neurosci. 2010. V. 11. P. 161–175. https://doi.org/10.1038/nrn2788.
  34. 34. Zachara N.E., Hart G.W. // Biochim. Biophys. Acta. 2004. V. 1673. P. 13–28. https://doi.org/10.1016/j.bbagen.2004.03.016
  35. 35. Xu Z., Isaji T., Fukuda T., Wang Y., Gu J. // J. Biol. Chem. 2019. V. 294. P. 3117–3124. https://doi.org/10.1074/jbc.RA118.005923
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека