RAS BiologyБиоорганическая химия Russian Journal of Bioorganic Chemistry

  • ISSN (Print) 0132-3423
  • ISSN (Online) 1998-2860

The Effect of Modification on the Intracellular Distribution of Zyxin in Xenopus laevis Embryos

PII
S1998286025020118-1
DOI
10.7868/S1998286025020118
Publication type
Review
Status
Published
Authors
Volume/ Edition
Volume 51 / Issue number 2
Pages
329-341
Abstract
Zyxin is a conserved mechanosensitive LIM domain protein that regulates F-actin filament assembly at cell junctions. In response to cell stretching, zyxin can either move into the nucleus and regulate gene expression, or it can exit the nucleus. Zyxin is recognized as an oncomarker, which makes studying its modifications and how it moves between nucleus and cytoplasm useful for diagnosing diseases at the molecular level. An effect of site-directed mutagenesis at palmitylation sites, O-GlcNAcylation sites, and amino acids at the N- and C-terminus on the ability of zyxin to enter the nucleus was demonstrated using Xenopus laevis embryos at gastrula stage. By adding the Flag epitope to the C-terminus of the zyxin molecule, it was found that the zyxin molecule loses its ability to move into the nucleus as a result. When palmitylation sites are targeted for mutation, the amount of zyxin in the nucleus decreases, whereas when amino acids are mutated to cause O-GlcNAcylation, the amount of zyxin increases. The first data obtained on the influence of these modifications on the movement of zyxin support global research on mechanisms behind changes in the localization of mechanosensitive proteins of the zyxin family. Since disruption of their intracellular localization leads to cancerous tumors and cardiovascular diseases, these investigations have both fundamental and medical importance.
Keywords
изоформы белка развитие внутриклеточная локализация зиксин модификации протеолиз
Date of publication
30.12.2025
Year of publication
2025
Number of purchasers
0
Views
54

References

  1. 1. Nix D.A., Beckerle M.C. // J. Cell Biol. 1997. V. 138. P. 1139–1147. https://doi.org/10.1083/jcb.138.5.1139
  2. 2. Cerisano V., Aalto Y., Perdichizzi S., Bernard G., Manara M.C., Benini S., Cenacchi G., Preda P., Lattanzi G., Nagy B., Knuutila S., Colombo M.P., Bernard A., Picci P., Scotlandi K. // Oncogene. 2004. V. 23. P. 5664–5674. https://doi.org/10.1038/sj.onc.1207741
  3. 3. Ermolina L.V., Martynova N.Iu., Zaraĭskiĭ A.G. // Russ. J. Bioorg. Chem. 2010. V. 36. P. 24–31. https://doi.org/10.1134/s1068162010010036
  4. 4. Martynova N.Y., Parshina E.A., Zaraisky A.G. // FEBS J. 2023. V. 290. P. 66–72. https://doi.org/10.1111/febs.16308
  5. 5. Martynova N.Y., Ermolina L.V., Ermakova G.V., Eroshkin F.M., Gyoeva F.K., Baturina N.S., Zaraisky A.G. // Dev. Biol. 2013. V. 380. P. 37–48. https://doi.org/10.1016/j.ydbio.2013.05.005
  6. 6. Wu Z., Wu D., Zhong Q., Zou X., Liu Z., Long H., Wei J., Li X., Dai F. // Front. Mol. Biosci. 2024. V. 11. P. 1371549. https://doi.org/10.3389/fmolb.2024.1371549
  7. 7. Wang Y.X., Wang D.Y., Guo Y.C., Guo J. // Eur. Rev. Med. Pharmacol. Sci. 2019. V. 23. P. 413–425. https://doi.org/10.26355/eurrev_201901_16790
  8. 8. Rauskolb C., Pan G., Reddy B.V., Oh H., Irvine K.D. // PLoS Biol. 2011. V. 9. P. e1000624. https://doi.org/10.1371/journal.pbio.1000624
  9. 9. Suresh Babu S., Wojtowicz A., Freichel M., Birnbaumer L., Hecker M., Cattaruzza M. // Sci. Signal. 2012. V. 5. P. ra91. https://doi.org/10.1126/scisignal.2003173
  10. 10. Beckerle M.C. // J. Cell Biol. 1986. V. 103. P. 1679– 1687. https://doi.org/10.1083/jcb.103.5.1679.
  11. 11. Crawford A.W., Beckerle M.C. // J. Biol. Chem. 1991. V. 266. P. 5847–5853. https://doi.org/10.1083/jcb.119.6.1573
  12. 12. Hirata H., Tatsumi H., Sokabe M.. // J. Cell Sci. 2008. V. 121. P. 2795–2804. https://doi.org/10.1242/jcs.030320
  13. 13. Sadler I., Crawford A.W., Michelsen J.W., Beckerle M.C. // J. Cell Biol. 1992. V. 119. P. 1573–1587. https://doi.org/10.1083/jcb.119.6.1573
  14. 14. Pérez-Alvarado G.C., Miles C., Michelsen J.W., Louis H.A., Winge D.R., Beckerle M.C., Summers M.F. // Nat. Struct. Biol. 1994. V. 1. P. 388–398. https://doi.org/10.1038/nsb0694-388
  15. 15. Schmeichel K.L., Beckerle M.C. // Cell. 1994. V. 79. P. 211–219. https://doi.org/10.1016/0092-8674 (94)90191-0
  16. 16. Schmeichel K.L., Beckerle M.C. // Biochem. J. 1998. V. 331. P. 885–892. https://doi.org/10.1042/bj3310885
  17. 17. Beckerle M.C. // Bioessays. 1997. V. 19. P. 949–957. https://doi.org/10.1002/bies.950191104.
  18. 18. Kadrmas J.L., Beckerle M.C. // Nat. Rev. Mol. Cell Biol. 2004. V. 5. P. 920–931. https://doi.org/10.1038/nrm1499
  19. 19. Steele A.N., Sumida G.M., Yamada S. // Biochem. Biophys. Res. Commun. 2012. V. 422. P. 653–657. https://doi.org/10.1016/j.bbrc.2012.05.046
  20. 20. Burridge K., Wittchen E.S. // J. Cell Biol. 2013. V. 200. P. 9–19. https://doi.org/10.1083/jcb.201210090
  21. 21. Mori M., Nakagami H., Koibuchi N., Miura K., Takami Y., Koriyama H., Hayashi H., Sabe H., Mochizuki N., Morishita R., Kaneda Y. // Mol. Biol. Cell. 2009. V. 20. P. 3115–3124. https://doi.org/10.1091/mbc.e09-01-0046
  22. 22. Call G.S., Chung J.Y., Davis J.A., Price B.D., Primavera T.S., Thomson N.C., Wagner M.V., Hansen M.D. // Biochem. Biophys. Res. Commun. 2011. V. 404. P. 780–784. https://doi.org/10.1016/j.bbrc.2010.12.058
  23. 23. Moody J.D., Grange J., Ascione M.P., Boothe D., Bushnell E., Hansen M.D. // Biochem. Biophys. Res. Commun. 2009. V. 378. P. 625–628. https://doi.org/10.1016/j.bbrc.2008.11.100
  24. 24. Fujita Y., Yamaguchi A., Hata K., Endo M., Yamaguchi N., Yamashita T. // BMC Cell Biol. 2009. V. 10. P. 6. https://doi.org/10.1186/1471-2121-10-6
  25. 25. Zhao Y., Yue S., Zhou X., Guo J., Ma S., Chen Q. // J. Biol. Chem. 2022. V. 298. P. 101776. https://doi.org/10.1016/j.jbc.2022.101776
  26. 26. Oku S., Takahashi N., Fukata Y., Fukata M. // J. Biol. Chem. 2013. V. 288. P. 19816–19829. https://doi.org/10.1074/jbc.M112.431676
  27. 27. Ivanova E.D., Parshina E.A., Zaraisky A.G., Martynova N.Y. // Russ. J. Bioorg. Chem. 2024. V. 50. P. 723–732. https://doi.org/10.1134/s1068162024030026
  28. 28. Sabino F., Madzharova E., Auf dem Keller U. // Cell Death Dis. 2020. V. 11. P. 674. https://doi.org/10.1038/s41419-020-02883-2
  29. 29. Martynova N.Y., Eroshkin F.M., Ermolina L.V., Ermakova G.V., Korotaeva A.L., Smurova K.M., Gyoeva F.K., Zaraisky A.G. // Dev. Dyn. 2008. V. 237. P. 736–749. https://doi.org/10.1002/dvdy.21471
  30. 30. Martynova N.Y., Parshina E.A., Zaraisky A.G. // STAR Protoc. 2021. V. 2. P. 100449. https://doi.org/10.1016/j.xpro.2021.100449
  31. 31. Linder M.E., Deschenes R.J. // Nat. Rev. Mol. Cell Biol. 2007. V. 8. P. 74–84. https://doi.org/10.1038/nrm2084
  32. 32. el-Husseini Ael-D, Bredt D.S. // Nat. Rev. Neurosci. 2002. V. 3. P. 791–802. https://doi.org/10.1038/nrn940
  33. 33. Fukata Y., Fukata M. // Nat. Rev. Neurosci. 2010. V. 11. P. 161–175. https://doi.org/10.1038/nrn2788.
  34. 34. Zachara N.E., Hart G.W. // Biochim. Biophys. Acta. 2004. V. 1673. P. 13–28. https://doi.org/10.1016/j.bbagen.2004.03.016
  35. 35. Xu Z., Isaji T., Fukuda T., Wang Y., Gu J. // J. Biol. Chem. 2019. V. 294. P. 3117–3124. https://doi.org/10.1074/jbc.RA118.005923
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library