- PII
- S1998286025020118-1
- DOI
- 10.7868/S1998286025020118
- Publication type
- Review
- Status
- Published
- Authors
- Volume/ Edition
- Volume 51 / Issue number 2
- Pages
- 329-341
- Abstract
- Zyxin is a conserved mechanosensitive LIM domain protein that regulates F-actin filament assembly at cell junctions. In response to cell stretching, zyxin can either move into the nucleus and regulate gene expression, or it can exit the nucleus. Zyxin is recognized as an oncomarker, which makes studying its modifications and how it moves between nucleus and cytoplasm useful for diagnosing diseases at the molecular level. An effect of site-directed mutagenesis at palmitylation sites, O-GlcNAcylation sites, and amino acids at the N- and C-terminus on the ability of zyxin to enter the nucleus was demonstrated using Xenopus laevis embryos at gastrula stage. By adding the Flag epitope to the C-terminus of the zyxin molecule, it was found that the zyxin molecule loses its ability to move into the nucleus as a result. When palmitylation sites are targeted for mutation, the amount of zyxin in the nucleus decreases, whereas when amino acids are mutated to cause O-GlcNAcylation, the amount of zyxin increases. The first data obtained on the influence of these modifications on the movement of zyxin support global research on mechanisms behind changes in the localization of mechanosensitive proteins of the zyxin family. Since disruption of their intracellular localization leads to cancerous tumors and cardiovascular diseases, these investigations have both fundamental and medical importance.
- Keywords
- изоформы белка развитие внутриклеточная локализация зиксин модификации протеолиз
- Date of publication
- 30.12.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 54
References
- 1. Nix D.A., Beckerle M.C. // J. Cell Biol. 1997. V. 138. P. 1139–1147. https://doi.org/10.1083/jcb.138.5.1139
- 2. Cerisano V., Aalto Y., Perdichizzi S., Bernard G., Manara M.C., Benini S., Cenacchi G., Preda P., Lattanzi G., Nagy B., Knuutila S., Colombo M.P., Bernard A., Picci P., Scotlandi K. // Oncogene. 2004. V. 23. P. 5664–5674. https://doi.org/10.1038/sj.onc.1207741
- 3. Ermolina L.V., Martynova N.Iu., Zaraĭskiĭ A.G. // Russ. J. Bioorg. Chem. 2010. V. 36. P. 24–31. https://doi.org/10.1134/s1068162010010036
- 4. Martynova N.Y., Parshina E.A., Zaraisky A.G. // FEBS J. 2023. V. 290. P. 66–72. https://doi.org/10.1111/febs.16308
- 5. Martynova N.Y., Ermolina L.V., Ermakova G.V., Eroshkin F.M., Gyoeva F.K., Baturina N.S., Zaraisky A.G. // Dev. Biol. 2013. V. 380. P. 37–48. https://doi.org/10.1016/j.ydbio.2013.05.005
- 6. Wu Z., Wu D., Zhong Q., Zou X., Liu Z., Long H., Wei J., Li X., Dai F. // Front. Mol. Biosci. 2024. V. 11. P. 1371549. https://doi.org/10.3389/fmolb.2024.1371549
- 7. Wang Y.X., Wang D.Y., Guo Y.C., Guo J. // Eur. Rev. Med. Pharmacol. Sci. 2019. V. 23. P. 413–425. https://doi.org/10.26355/eurrev_201901_16790
- 8. Rauskolb C., Pan G., Reddy B.V., Oh H., Irvine K.D. // PLoS Biol. 2011. V. 9. P. e1000624. https://doi.org/10.1371/journal.pbio.1000624
- 9. Suresh Babu S., Wojtowicz A., Freichel M., Birnbaumer L., Hecker M., Cattaruzza M. // Sci. Signal. 2012. V. 5. P. ra91. https://doi.org/10.1126/scisignal.2003173
- 10. Beckerle M.C. // J. Cell Biol. 1986. V. 103. P. 1679– 1687. https://doi.org/10.1083/jcb.103.5.1679.
- 11. Crawford A.W., Beckerle M.C. // J. Biol. Chem. 1991. V. 266. P. 5847–5853. https://doi.org/10.1083/jcb.119.6.1573
- 12. Hirata H., Tatsumi H., Sokabe M.. // J. Cell Sci. 2008. V. 121. P. 2795–2804. https://doi.org/10.1242/jcs.030320
- 13. Sadler I., Crawford A.W., Michelsen J.W., Beckerle M.C. // J. Cell Biol. 1992. V. 119. P. 1573–1587. https://doi.org/10.1083/jcb.119.6.1573
- 14. Pérez-Alvarado G.C., Miles C., Michelsen J.W., Louis H.A., Winge D.R., Beckerle M.C., Summers M.F. // Nat. Struct. Biol. 1994. V. 1. P. 388–398. https://doi.org/10.1038/nsb0694-388
- 15. Schmeichel K.L., Beckerle M.C. // Cell. 1994. V. 79. P. 211–219. https://doi.org/10.1016/0092-8674 (94)90191-0
- 16. Schmeichel K.L., Beckerle M.C. // Biochem. J. 1998. V. 331. P. 885–892. https://doi.org/10.1042/bj3310885
- 17. Beckerle M.C. // Bioessays. 1997. V. 19. P. 949–957. https://doi.org/10.1002/bies.950191104.
- 18. Kadrmas J.L., Beckerle M.C. // Nat. Rev. Mol. Cell Biol. 2004. V. 5. P. 920–931. https://doi.org/10.1038/nrm1499
- 19. Steele A.N., Sumida G.M., Yamada S. // Biochem. Biophys. Res. Commun. 2012. V. 422. P. 653–657. https://doi.org/10.1016/j.bbrc.2012.05.046
- 20. Burridge K., Wittchen E.S. // J. Cell Biol. 2013. V. 200. P. 9–19. https://doi.org/10.1083/jcb.201210090
- 21. Mori M., Nakagami H., Koibuchi N., Miura K., Takami Y., Koriyama H., Hayashi H., Sabe H., Mochizuki N., Morishita R., Kaneda Y. // Mol. Biol. Cell. 2009. V. 20. P. 3115–3124. https://doi.org/10.1091/mbc.e09-01-0046
- 22. Call G.S., Chung J.Y., Davis J.A., Price B.D., Primavera T.S., Thomson N.C., Wagner M.V., Hansen M.D. // Biochem. Biophys. Res. Commun. 2011. V. 404. P. 780–784. https://doi.org/10.1016/j.bbrc.2010.12.058
- 23. Moody J.D., Grange J., Ascione M.P., Boothe D., Bushnell E., Hansen M.D. // Biochem. Biophys. Res. Commun. 2009. V. 378. P. 625–628. https://doi.org/10.1016/j.bbrc.2008.11.100
- 24. Fujita Y., Yamaguchi A., Hata K., Endo M., Yamaguchi N., Yamashita T. // BMC Cell Biol. 2009. V. 10. P. 6. https://doi.org/10.1186/1471-2121-10-6
- 25. Zhao Y., Yue S., Zhou X., Guo J., Ma S., Chen Q. // J. Biol. Chem. 2022. V. 298. P. 101776. https://doi.org/10.1016/j.jbc.2022.101776
- 26. Oku S., Takahashi N., Fukata Y., Fukata M. // J. Biol. Chem. 2013. V. 288. P. 19816–19829. https://doi.org/10.1074/jbc.M112.431676
- 27. Ivanova E.D., Parshina E.A., Zaraisky A.G., Martynova N.Y. // Russ. J. Bioorg. Chem. 2024. V. 50. P. 723–732. https://doi.org/10.1134/s1068162024030026
- 28. Sabino F., Madzharova E., Auf dem Keller U. // Cell Death Dis. 2020. V. 11. P. 674. https://doi.org/10.1038/s41419-020-02883-2
- 29. Martynova N.Y., Eroshkin F.M., Ermolina L.V., Ermakova G.V., Korotaeva A.L., Smurova K.M., Gyoeva F.K., Zaraisky A.G. // Dev. Dyn. 2008. V. 237. P. 736–749. https://doi.org/10.1002/dvdy.21471
- 30. Martynova N.Y., Parshina E.A., Zaraisky A.G. // STAR Protoc. 2021. V. 2. P. 100449. https://doi.org/10.1016/j.xpro.2021.100449
- 31. Linder M.E., Deschenes R.J. // Nat. Rev. Mol. Cell Biol. 2007. V. 8. P. 74–84. https://doi.org/10.1038/nrm2084
- 32. el-Husseini Ael-D, Bredt D.S. // Nat. Rev. Neurosci. 2002. V. 3. P. 791–802. https://doi.org/10.1038/nrn940
- 33. Fukata Y., Fukata M. // Nat. Rev. Neurosci. 2010. V. 11. P. 161–175. https://doi.org/10.1038/nrn2788.
- 34. Zachara N.E., Hart G.W. // Biochim. Biophys. Acta. 2004. V. 1673. P. 13–28. https://doi.org/10.1016/j.bbagen.2004.03.016
- 35. Xu Z., Isaji T., Fukuda T., Wang Y., Gu J. // J. Biol. Chem. 2019. V. 294. P. 3117–3124. https://doi.org/10.1074/jbc.RA118.005923