ОБНБиоорганическая химия Russian Journal of Bioorganic Chemistry

  • ISSN (Print) 0132-3423
  • ISSN (Online) 1998-2860

Полиоксониобат платины: стабильность, цитотоксичность и поглощение клетками

Код статьи
S0132342325020141-1
DOI
10.31857/S0132342325020141
Тип публикации
Обзор
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 51 / Номер выпуска 2
Страницы
362-371
Аннотация
Полиоксометаллаты платины – комплексы Pt (IV), содержащие объемные кластерные лиганды. Ранее было показано, что полиоксониобат платины структуры [(Nb6O19)2{Pt(OH)2}2]12− (Pt-PON1), содержащий два платиновых центра, способен образовывать ковалентный конъюгат с ДНК. В настоящей работе исследована структурная стабильность Pt-PON1 и его конъюгата с гуанином по положению N7, цитотоксичность этого соединения и его накопление клетками. Квантово-механическое моделирование показало, что комплекс Pt-PON1 нестабилен вне кристаллической решетки, а его конъюгат с гуанином должен достаточно легко претерпевать структурную перестройку. Наблюдалось значительное снижение выживаемости Escherichia coli штаммов XL1-Blue и DH5α и клеток человека линий HEK293T и MCF-7 в присутствии Pt-PON1 уже в концентрации 20 мкМ, однако при более высоких концентрациях соединение было малорастворимо в биологически совместимых средах. Методом атомно-эмиссионной спектроскопии по Pt и Nb показано, что Pt-PON1 эффективно поглощается клетками человека в стехиометрии, соответствующей исходному комплексу. Таким образом, полиоксометаллаты платины при условии решения проблемы растворимости могут рассматриваться как перспективные противоопухолевые агенты.
Ключевые слова
полиоксометаллаты препараты платины повреждение ДНК цитотоксичность
Дата публикации
09.11.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
43

Библиография

  1. 1. Kelland L. // Nat. Rev. Cancer. 2007. V. 7. P. 573–584. https://doi.org/10.1038/nrc2167
  2. 2. Dasari S., Tchounwou P.B. // Eur. J. Pharmacol. 2014. V. 740. P. 364–378. https://doi.org/10.1016/j.ejphar.2014.07.025
  3. 3. Wheate N.J., Walker S., Craig G.E., Oun R. // Dalton Trans. 2010. V. 39. P. 8113–8127. https://doi.org/10.1039/c0dt00292e
  4. 4. Apps M.G., Choi E.H.Y., Wheate N.J. // Endocr. Relat. Cancer. 2015. V. 22. P. R219–R233. https://doi.org/10.1530/ERC-15-0237
  5. 5. Hu X., Li F., Noor N., Ling D. // Sci. Bull. 2017. V. 62. P. 589–596. https://doi.org/10.1016/j.scib.2017.03.008
  6. 6. Li X., Liu Y., Tian H. // Bioinorg. Chem. Appl. 2018. V. 2018. P. 8276139. https://doi.org/10.1155/2018/8276139
  7. 7. Gibson D. // J. Inorg. Biochem. 2021. V. 217. P. 111353. https://doi.org/10.1016/j.jinorgbio.2020.111353
  8. 8. Marotta C., Giorgi E., Binacchi F., Cirri D., Gabbiani C., Pratesi A. // Inorg. Chim. Acta. 2023. V. 548. P. 121388. https://doi.org/10.1016/j.ica.2023.121388
  9. 9. Aher S., Zhu J., Bhagat P., Borse L., Liu X. // Top. Curr. Chem. 2024. V. 382. P. 6. https://doi.org/10.1007/s41061-023-00448-3
  10. 10. Rhule J.T., Hill C.L., Judd D.A., Schinazi R.F. // Chem. Rev. 1998. V. 98. P. 327–358. https://doi.org/10.1021/cr960396q
  11. 11. Hasenknopf B. // Front. Biosci. 2005. V. 10. P. 275–287. https://doi.org/10.2741/1527
  12. 12. Van Rompuy L.S., Parac-Vogt T.N. // Curr. Opin. Biotechnol. 2019. V. 58. P. 92–99. https://doi.org/10.1016/j.copbio.2018.11.013
  13. 13. Shigeta S., Mori S., Yamase T., Yamamoto N., Yamamoto N. // Biomed. Pharmacother. 2006. V. 60. P. 211–219. https://doi.org/10.1016/j.biopha.2006.03.009
  14. 14. Wang S., Sun W., Hu Q., Yan H., Zeng Y. // Bioorg. Med. Chem. Lett. 2017. V. 27. P. 2357–2359. https://doi.org/10.1016/j.bmcl.2017.04.025
  15. 15. Bijelic A., Aureliano M., Rompel A. // Chem. Commun. 2018. V. 54. P. 1153–1169. https://doi.org/10.1039/c7cc07549a
  16. 16. Gumerova N., Krivosudský L., Fraqueza G., Breibeck J., Al-Sayed E., Tanuhadi E., Bijelic A., Fuentes J., Aureliano M., Rompel A. // Metallomics. 2018. V. 10. P. 287–295. https://doi.org/10.1039/c7mt00279c
  17. 17. Yanagie H., Ogata A., Mitsui S., Hisa T., Yamase T., Eriguchi M. // Biomed. Pharmacother. 2006. V. 60. P. 349–352. https://doi.org/10.1016/j.biopha.2006.06.018
  18. 18. Bijelic A., Aureliano M., Rompel A. // Angew. Chem. Int. Ed. 2019. V. 58. P. 2980–2999. https://doi.org/10.1002/anie.201803868
  19. 19. Zhao M., Chen X., Chi G., Shuai D., Wang L., Chen B., Li J. // Inorg. Chem. Front. 2020. V. 7. P. 4320–4332. https://doi.org/10.1039/D0QI00860E
  20. 20. Gao N., Sun H., Dong K., Ren J., Duan T., Xu C., Qu X. // Nat. Commun. 2014. V. 5. P. 3422. https://doi.org/10.1038/ncomms4422
  21. 21. Yang H.-K., Cheng Y.-X., Su M.-M., Xiao Y., Hu M.-B., Wang W., Wang Q. // Bioorg. Med. Chem. Lett. 2013. V. 23. P. 1462–1466. https://doi.org/10.1016/j.bmcl.2012.12.081
  22. 22. Fu L., Gao H., Yan M., Li S., Li X., Dai Z., Liu S. // Small. 2015. V. 11. P. 2938–2945. https://doi.org/10.1002/smll.201500232
  23. 23. Sun T., Cui W., Yan M., Qin G., Guo W., Gu H., Liu S., Wu Q. // Adv. Mater. 2016. V. 28. P. 7397–7404. https://doi.org/10.1002/adma.201601778
  24. 24. Abramov P.A., Vicent C., Kompankov N.B., Gushchin A.L., Sokolov M.N. // Chem. Commun. 2015. V. 51. P. 4021–4023. https://doi.org/10.1039/C5CC00315F
  25. 25. Yudkina A.V., Sokolov M.N., Abramov P.A., Grin I.R., Zharkov D.O. // Russ. J. Bioorg. Chem. 2019. V. 45. P. 641–646. https://doi.org/10.1134/S1068162019060414
  26. 26. Wang D., Lippard S.J. // Nat. Rev. Drug Discov. 2005. V. 4. P. 307–320. https://doi.org/10.1038/nrd1691
  27. 27. Stewart J.J.P. // MOPAC2016. Colorado Springs: Stewart Computational Chemistry, 2016.
  28. 28. Mardirossian N., Head-Gordon M. // Mol. Phys. 2017. V. 115. P. 2315–2372. https://doi.org/10.1080/00268976.2017.1333644
  29. 29. Nichols R.J., Sen S., Choo Y.J., Beltrao P., Zietek M., Chaba R., Lee S., Kazmierczak K. M., Lee K.J., Wong A., Shales M., Lovett S., Winkler M.E., Krogan N.J., Typas A., Gross C.A. // Cell. 2011. V. 144. P. 143–156. https://doi.org/10.1016/j.cell.2010.11.052
  30. 30. Garnett M.J., Edelman E.J., Heidorn S.J., Greenman C.D., Dastur A., Lau K.W., Greninger P., Thompson I.R., Luo X., Soares J., Liu Q., Iorio F., Surdez D., Chen L., Milano R.J., Bignell G.R., Tam A.T., Davies H., Stevenson J.A., Barthorpe S., Lutz S.R., Kogera F., Lawrence K., McLaren-Douglas A., Mitropoulos X., Mironenko T., Thi H., Richardson L., Zhou W., Jewitt F., Zhang T., O’Brien P., Boisvert J.L., Price S., Hur W., Yang W., Deng X., Butler A., Choi H.G., Chang J.W., Baselga J., Stamenkovic I., Engelman J.A., Sharma S.V., Delattre O., Saez-Rodriguez J., Gray N.S., Settleman J., Futreal P.A., Haber D.A., Stratton M.R., Ramaswamy S., McDermott U., Benes C.H. // Nature. 2012. V. 483. P. 570–575. https://doi.org/10.1038/nature11005
  31. 31. Tusskorn O., Khunluck T., Prawan A., Senggunprai L., Kukongviriyapan V. // Biomed. Pharmacother. 2019. V. 111. P. 109–118. https://doi.org/10.1016/j.biopha.2018.12.051
  32. 32. Santini M.T., Paradisi S., Straface E., Malorni W. // Cell Biol. Toxicol. 1993. V. 9. P. 295–306. https://doi.org/10.1007/BF00755607
  33. 33. Kobayashi D., Kakinouchi K., Nagae T., Nagai T., Shimura K., Hazama A. // FEBS Lett. 2017. V. 591. P. 718–727. https://doi.org/10.1002/1873-3468.12579
  34. 34. Welters M.J.P., Fichtinger-Schepman A.M.J., Baan R.A., Hermsen M.A.J.A., van der Vijgh W.J.F., Cloos J., Braakhuis B.J.M. // Int. J. Cancer. 1997. V. 71. P. 410–415. https://doi.org/10.1002/ (SICI)1097-0215(19970502) 71:33.0.CO;2-J
  35. 35. Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Petersson G.A., Nakatsuji H., Li X., Caricato M., Marenich A., Bloino J., Janesko B.G., Gomperts R., Mennucci B., Hratchian H.P., Ortiz J.V., Izmaylov A.F., Sonnenberg J.L., Williams-Young D., Ding F., Lipparini F., Egidi F., Goings J., Peng B., Petrone A., Henderson T., Ranasinghe D., Zakrzewski V.G., Gao J., Rega N., Zheng G., Liang W., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Throssell K., Montgomery J.A., Jr., Peralta J.E., Ogliaro F., Bearpark M., Heyd J.J., Brothers E., Kudin K.N., Staroverov V.N., Keith T., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Millam J.M., Klene M., Adamo C., Cammi R., Ochterski J.W., Martin R.L., Morokuma K., Farkas O., Foresman J.B., Fox D.J. // Gaussian 09, Revision D.01. Wallingford: Gaussian, Inc., 2016.
  36. 36. Momma K., Izumi F. // J. Appl. Crystallogr. 2008. V. 41. P. 653–658. https://doi.org/10.1107/S0021889808012016
  37. 37. van Meerloo J., Kaspers G.J.L., Cloos J. // Methods Mol. Biol. 2011. V. 731. P. 237–245. https://doi.org/10.1007/978-1-61779-080-5_20
  38. 38. Gumerova N.I., Rompel A. // Nat. Rev. Chem. 2018. V. 2. P. 0112. https://doi.org/10.1038/s41570-018-0112
  39. 39. Compain J.-D., Mialane P., Marrot J., Sécheresse F., Zhu W., Oldfield E., Dolbecq A. // Chemistry. 2010. V. 16. P. 13741–13748. https://doi.org/10.1002/chem.201001626
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека