- PII
- S19982860S0132342325050219-1
- DOI
- 10.7868/S1998286025050219
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 51 / Issue number 5
- Pages
- 966-978
- Abstract
- For the first time, the proteins of the membrane fraction isolated from the psychrotrophic bacterium were analyzed using the label-free quantitative chromatography-mass spectrometry. Comparison of the samples from cells cultured at 10°C and at room temperature revealed significant differences in the content of many proteins involved in important physiological processes, including DNA and RNA binding proteins, membrane transporters, proteins providing protection against osmotic and oxidative stress, and others. The results of the work contribute to understanding of mechanisms of the processes occurring in the cell membranes of psychrotrophic bacteria at low temperatures, and complement existing ideas about the adaptation strategies of microorganisms living in permafrost deposits. The data obtained can also be used to search for potential biocatalysts with activity at low temperatures.
- Keywords
- Exiguobacterium sibiricum многолетнемерзлые отложения экстремофильные микроорганизмы мембранные белки протеом
- Date of publication
- 01.05.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 5
References
- 1. Tarnocai C. // In: Permafrost Soils / Ed. Margesin R. Berlin, Heidelberg: Springer, 2009. P. 3–16. https://doi.org/10.1007/978-3-540-69371-0_1
- 2. Gilichinsky D.A., Rivkina E.M. // In: Encyclopedia of Geobiology. Encyclopedia of Earth Sciences Series / Eds. Reitner J., Thiel V. Dordrecht: Springer, 2011. P. 726–732. https://doi.org/10.1007/978-1-4020-9212-1_162
- 3. Jansson J.K., Tas N. // Nat. Rev. Microbiol. 2014. V. 12. P. 414–425. https://doi.org/10.1038/nrmicro3262
- 4. Rivkina E., Laurinavichius K., McGrath J., Tiedje J., Shcherbakova V., Gilichinsky D. // Adv. Space Res. 2004. V. 33. P. 1215–1221. https://doi.org/10.1016/j.asr.2003.06.024
- 5. Vishnivetskaya T.A., Petrova M.A., Urbance J., Ponder M., Moyer C.L., Gilichinsky D.A., Tiedje J.M. // Astrobiology. 2006. V. 6. P. 400–414. https://doi.org/10.1089/ast.2006.6.400
- 6. Rodrigues D.F., Goris J., Vishnivetskaya T., Gilichinsky D., Thomashow M.F., Tiedje J.M. // Extremophiles. 2006. V. 10. P. 285–294. https://doi.org/10.1007/s00792-005-0497-5
- 7. Rodrigues D.F., Ivanova N., He Z., Huebner M., Zhou J., Tiedje J.M. // BMC Genomics. 2008. V. 9. P. 547. https://doi.org/10.1186/1471-2164-9-547
- 8. Qiu Y., Vishnivetskaya T.A., Lubman D.M. // In: Permafrost Soils / Ed. Margesin R. Berlin, Heidelberg: Springer, 2009. P. 169–181. https://doi.org/10.1007/978-3-540-69371-0_12
- 9. Petrovskaya L.E., Siletsky S.A., Mamedov M.D., Lukashev E.P., Balashov S.P., Dolgikh D.A., Kirpichnikov M.P. // Biochemistry (Moscow). 2023. V. 88. P. 1544–1554. https://doi.org/10.1134/s0006297923100103
- 10. Petrovskaya L.E., Lukashev E.P., Chupin V.V., Sychev S.V., Lyukmanova E.N., Kryukova E.A., Ziganshin R.H., Spirina E.V., Rivkina E.M., Khatypov R.A., Erokhina L.G., Gilichinsky D.A., Shuvalov V.A., Kirpichnikov M.P. // FEBS Lett. 2010. V. 584. P. 4193–4196. https://doi.org/10.1016/j.febslet.2010.09.005
- 11. Berlina Y.Y., Petrovskaya L.E., Kryukova E.A., Shingarova L.N., Gapizov S.S., Kryukova M.V., Rivkina E.M., Kirpichnikov M.P., Dolgikh D.A. // Biomolecules. 2021. V. 11. P. 1229. https://doi.org/10.3390/biom11081229
- 12. Gangoiti J., Pijning T., Dijkhuizen L. // Appl. Environ. Microbiol. 2016. V. 82. P. 756–766. https://doi.org/10.1128/AEM.03420-15
- 13. Löwe J., Ingram A.A., Gröger H. // Bioorg. Med. Chem. 2018. V. 26. P. 1387–1392. https://doi.org/10.1016/j.bmc.2017.12.005
- 14. Konings W.N., Albers S.-V., Koning S., Driessen A.J.M. // Antonie Van Leeuwenhoek. 2002. V. 81. P. 61–72. https://doi.org/10.1023/A:1020573408652
- 15. Soufi B., Macek B. // Int. J. Med. Microbiol. 2015. V. 305. P. 203–208. https://doi.org/10.1016/j.ijmm.2014.12.017
- 16. Rodrigues D.F., Tiedje J.M. // Appl. Environ. Microbiol. 2008. V. 74. P. 1677–1686. https://doi.org/10.1128/AEM.02000-07
- 17. Collins T., Margesin R. // Appl. Microbiol. Biotechnol. 2019. V. 103. P. 2857–2871. https://doi.org/10.1007/s00253-019-09659-5
- 18. Seixas A.F., Quendera A.P., Sousa J.P., Silva A.F.Q., Arraiano C.M., Andrade J.M. // Front. Genet. 2022. V. 12. Р. 821535. https://doi.org/10.3389/fgene.2021.821535
- 19. Ezraty B., Gennaris A., Barras F., Collet J.-F. // Nat. Rev. Microbiol. 2017. V. 15. P. 385–396. https://doi.org/10.1038/nrmicro.2017.26
- 20. Molloy M.P., Herbert B.R., Slade M.B., Rabilloud T., Nouwens A.S., Williams K.L., Gooley A.A. // Eur. J. Biochem. 2000. V. 267. P. 2871–2881. https://doi.org/10.1046/j.1432-1327.2000.01296.x
- 21. Cao Y., Pan Y., Huang H., Jin X., Levin E.J., Kloss B., Zhou M. // Nature. 2013. V. 496. P. 317–322. https://doi.org/10.1038/nature12056
- 22. Pech M., Karim Z., Yamamoto H., Kitakawa M., Qin Y., Nierhaus K.H. // Proc. Natl. Acad. Sci. USA. 2011. V. 108. P. 3199–3203. https://doi.org/10.1073/pnas.1012994108
- 23. Weber M.H.W., Marahiel M.A. // Sci. Prog. 2003. V. 86. P. 9–75. https://doi.org/10.3184/003685003783238707
- 24. Kato J., Suzuki H., Ikeda H. // J. Biol. Chem. 1992. V. 267. P. 25676–25684. https://doi.org/10.1016/S0021-9258 (18)35660-6
- 25. Zhang Y., Burkhardt D.H., Rouskin S., Li G.-W., Weissman J.S., Gross C.A. // Mol. Cell. 2018. V. 70. P. 274–286.e7. https://doi.org/10.1016/j.molcel.2018.02.035
- 26. Owttrim G.W. // RNA Biol. 2013. V. 10. P. 96–110. https://doi.org/10.4161/rna.22638
- 27. Pavankumar T.L., Rai N., Pandey P.K., Vincent N. // DNA. 2024. V. 4. P. 455–472. https://doi.org/10.3390/dna4040031
- 28. Starosta A.L., Lassak J., Jung K., Wilson D.N. // FEMS Microbiol. Rev. 2014. V. 38. P. 1172–1201. https://doi.org/10.1111/1574-6976.12083
- 29. Gruffaz C., Smirnov A. // Front. Mol. Biosci. 2023. V. 10. Р. 1263433. https://doi.org/10.3389/fmolb.2023.1263433
- 30. Wood A., Irving S.E., Bennison D.J., Corrigan R.M. // PLoS Genet. 2019. V. 15. P. e1008346. https://doi.org/10.1371/journal.pgen.1008346
- 31. Njenga R., Boele J., Öztürk Y., Koch H.-G. // J. Biol. Chem. 2023. V. 299. Р. 105163. https://doi.org/10.1016/j.jbc.2023.105163
- 32. Hederstedt L. // Biochemistry (Moscow). 2021. V. 86. P. 8–21. https://doi.org/10.1134/S0006297921010028
- 33. Seel W., Flegler A., Zunabovic-Pichler M., Lipski A. // J. Bacteriol. 2018. V. 200. Р. e00148-18. https://doi.org/10.1128/jb.00148-18
- 34. Jeckelmann J.-M., Erni B. // In: Bacterial Cell Walls Membranes / Ed. Kuhn A. Cham: Springer Int. Publ., 2019. P. 223–274. https://doi.org/10.1007/978-3-030-18768-2_8
- 35. Trincone A. // Molecules. 2018. V. 23. P. 901. https://doi.org/10.3390/molecules23040901
- 36. Mascher T. // FEMS Microbiol. Lett. 2006. V. 264. P. 133–144. https://doi.org/10.1111/j.1574-6968.2006.00444.x
- 37. George N.L., Orlando B.J. // Nat. Commun. 2023. V. 14. P. 3896. https://doi.org/10.1038/s41467-023-39678-w
- 38. Suntharalingam P., Senadheera M.D., Mair R.W., Lé-vesque C.M., Cvitkovitch D.G. // J. Bacteriol. 2009. V. 191. P. 2973–2984. https://doi.org/10.1128/jb.01563-08
- 39. Hsu J.-L., Chen H.-C., Peng H.-L., Chang H.-Y. // J. Biol. Chem. 2008. V. 283. P. 9933–9944. https://doi.org/10.1074/jbc.M708836200
- 40. Claverys J.-P., Prudhomme M., Martin B. // Annu. Rev. Microbiol. 2006. V. 60. P. 451–475. https://doi.org/10.1146/annurev.micro.60.080805.142139
- 41. Erill I., Campoy S., Barbé J. // FEMS Microbiol. Rev. 2007. V. 31. P. 637–656. https://doi.org/10.1111/j.1574-6976.2007.00082.x
- 42. Schulz A., Schumann W. // J. Bacteriol. 1996. V. 178. P. 1088–1093. https://doi.org/10.1128/jb.178.4.1088-1093.1996
- 43. Prabudiansyah I., Driessen A.J.M. // In: Protein Sugar Export Assembly Gram-positives / Eds. Bagnoli F., Rappuoli R. Cham: Springer Int. Publ., 2017. P. 45–67. https://doi.org/10.1007/82_2016_9
- 44. Imam S., Chen Z., Roos D.S., Pohlschröder M. // PLoS One. 2011. V. 6. P. e28919. https://doi.org/10.1371/journal.pone.0028919
- 45. Jin F., Conrad J.C., Gibiansky M.L., Wong G.C.L. // Proc. Natl. Acad. Sci. USA. 2011. V. 108. P. 12617– 12622. https://doi.org/10.1073/pnas.1105073108
- 46. Schuhmacher J.S., Thormann K.M., Bange G. // FEMS Microbiol. Rev. 2015. V. 39. P. 812–822. https://doi.org/10.1093/femsre/fuv034
- 47. Herrou J., Willett J.W., Czyż D.M., Babnigg G., Kim Y., Crosson S. // J. Bacteriol. 2017. V. 199. P. e00746-16. https://doi.org/10.1128/jb.00746-16
- 48. Rismondo J., Schulz L.M. // Microorganisms. 2021. V. 9. P. 163. https://doi.org/10.3390/microorganisms9010163
- 49. Zhang D., Zhu Z., Li Y., Li X., Guan Z., Zheng J. // mSystems. 2021. V. 6. P. e0038321. https://doi.org/10.1128/msystems.00383-21
- 50. Shabayek S., Bauer R., Mauerer S., Mizaikoff B., Spellerberg B. // Mol. Microbiol. 2016. V. 100. P. 589– 606. https://doi.org/10.1111/mmi.13335
- 51. Sleator R.D., Hill C. // FEMS Microbiol. Rev. 2002. V. 26. P. 49–71. https://doi.org/10.1111/j.1574-6976.2002.tb00598.x
- 52. Wendel B. M. ,Pi H. ,Krüger L., Herzberg C., Stülke J., Helmann J. D. / / mBio. 2022. V. 13. P. e00092-22. https://doi.org/10.1128/mbio.00092-22
- 53. Lesniak J., Barton W.A., Nikolov D.B. // Protein Sci. 2003. V. 12. P. 2838–2843. https://doi.org/10.1110/ps.03375603
- 54. Saikolappan S., Das K., Sasindran S.J., Jagannath C., Dhandayuthapani S. // Tuberculosis. 2011. V. 91. P. S119–S127. https://doi.org/10.1016/j.tube.2011.10.021
- 55. Goto S., Kawamoto J., Sato S.B., Iki T., Watanabe I., Kudo K., Esaki N., Kurihara T. // AMB Expr. 2015. V. 5. P. 11. https://doi.org/10.1186/s13568-015-0098-3
- 56. Sajjad W., Din G., Rafiq M., Iqbal A., Khan S., Zada S., Ali B., Kang S. // Extremophiles. 2020. V. 24. P. 447– 473. https://doi.org/10.1007/s00792-020-01180-2
- 57. Tribelli P.M., López N.I. // Life. 2018. V. 8. P. 8. https://doi.org/10.3390/life8010008
- 58. Sauvage E., Kerff F., Terrak M., Ayala J.A., Charlier P. // FEMS Microbiol. Rev. 2008. V. 32. P. 234– 258. https://doi.org/10.1111/j.1574-6976.2008.00105.x
- 59. Martinez-Bond E.A., Soriano B.M., Williams A.H. // Curr. Opin. Struct. Biol. 2022. V. 77. P. 102480. https://doi.org/10.1016/j.sbi.2022.102480
- 60. Shih Y.-L., Rothfield L. // Microbiol. Mol. Biol. Rev. 2006. V. 70. P. 729–754. https://doi.org/10.1128/mmbr.00017-06
- 61. Meziane-Cherif D., Stogios P.J., Evdokimova E., Savchenko A., Courvalin P. // Proc. Natl. Acad. Sci. USA. 2014. V. 111. P. 5872–5877. https://doi.org/10.1073/pnas.1402259111
- 62. Brown S., Santa Maria J.P., Walker S. // Annu. Rev. Microbiol. 2013. V. 67. P. 313–336. https://doi.org/10.1146/annurev-micro-092412-155620
- 63. Ting L., Williams T.J., Cowley M.J., Lauro F.M., Guilhaus M., Raftery M.J., Cavicchioli R. // Environ. Microbiol. 2010. V. 12. P. 2658–2676. https://doi.org/10.1111/j.1462-2920.2010.02235.x
- 64. Lambert C., Poullion T., Zhang Q., Schmitt A., Masse J.-M., Gloux K., Poyart C., Fouet A. // PLoS One. 2023. V. 18. P. e0284402. https://doi.org/10.1371/journal.pone.0284402
- 65. Gabrielska J., Gruszecki W.I. // Biochim. Biophys. Acta Biomembr. 1996. V. 1285. P. 167–174. https://doi.org/10.1016/S0005-2736 (96)00152-6
- 66. Rappsilber J., Mann M., Ishihama Y. // Nat. Protoc. 2007. V. 2. P. 1896–1906. https://doi.org/10.1038/nprot.2007.261
- 67. Tyanova S., Temu T., Cox J. // Nat. Protoc. 2016. V. 11. P. 2301–2319. https://doi.org/10.1038/nprot.2016.136
- 68. Tyanova S., Temu T., Sinitcyn P., Carlson A., Hein M.Y., Geiger T., Mann M., Cox J. // Nat. Methods. 2016. V. 13. P. 731–740. https://doi.org/10.1038/nmeth.3901