RAS BiologyБиоорганическая химия Russian Journal of Bioorganic Chemistry

  • ISSN (Print) 0132-3423
  • ISSN (Online) 1998-2860

Effect of Mutation in the LLC1 Mouse Lewis Lung Adenocarcinoma Line on Sensitivity to Particle Radiotherapy

PII
S19982860S0132342325050204-1
DOI
10.7868/S1998286025050204
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 51 / Issue number 5
Pages
953-965
Abstract
Lung adenocarcinoma is a malignant tumor, which is the most common type of non-small cell lung cancer. Low efficiency of standard methods of treatment of lung adenocarcinoma with mutation of the tumor suppressor gene is a serious problem in clinical practice. Search and improvement of new therapeutic approaches to this disease remains an urgent task of modern biomedicine. The aim of the work was to create an model of lung cancer based on the LLC1 cell line with knockout of the gene to assess the sensitivity of mutant cells to various types of radiation therapy, including irradiation with photons, protons and neutrons. The main methods used were CRISPR/Cas9 genome editing technologies to obtain mutant clones, laser cell sorting, PCR analysis to confirm the deletion, as well as assessment of viability, proliferation (metabolic tests, marker expression), apoptosis induction (annexin V-PI method) and gene expression after cell irradiation with a dose of 2 Gy. As a result, heterozygous mutant lines LLC1-STK11-Mut were obtained. Cell irradiation revealed that in mutant cells, radio-induced growth stimulation persisted longer than in wild-type cells, and a significant increase in the proportion of late apoptotic and necrotic cells was observed. At the same time, expression temporarily decreased after irradiation, but quickly recovered in mutant cells, which indicates their higher radioresistance. Unlike wild-type cells, the expression level of the gene in mutant cells did not change significantly after irradiation. Thus, the mutation contributes to the formation of radioresistance in tumor cells by triggering various adaptation mechanisms. The obtained model can be used for further study of radioresistance and development of new approaches to the therapy of tumors with mutation.
Keywords
аденокарцинома легкого серин/треониновая киназа 11 (STK11) адронная терапия терапия частицами иммунотерапия рака
Date of publication
01.05.2025
Year of publication
2025
Number of purchasers
0
Views
4

References

  1. 1. Khozyainova A.A., Menyailo M.E., Tretyakova M.S., Bokova U.A., Korobeynikova A.A., Gerashchenko T.S., Rodionov E.O., Miller S.V., Denisov E.V. // RUDN J. Med. 2024. V. 28. P. 439–451. https://doi.org/10.22363/2313-0245-2024-28-4-439-451
  2. 2. Spella M., Stathopoulos G.T. // Cancers (Basel). 2021. V. 13. P. 384. https://doi.org/10.3390/cancers13030384
  3. 3. Xin S., Wen M., Tian Y., Dong H., Wan Z., Jiang S., Meng F., Xiong Y., Han Y. // BMC Cancer. 2025. V. 23. P. 66. https://doi.org/10.1186/S12957-025-03701-9
  4. 4. Schabath M.B., Welsh E.A., Fulp W.J., Chen L., Teer J.K., Thompson Z.J., Engel B.E., Xie M., Berglund A.E., Creelan B.C., Antonia S.J., Gray J.E., Eschrich S.A., Chen D.T., Cress W.D., Haura E.B., Beg A.A. // Oncogene. 2016. V. 35. P. 3209–3216. https://doi.org/10.1038/onc.2015.375
  5. 5. Pons-Tostivint E., Lugat A., Fontenau J.F., De-nis M.G., Bennouna J. // Cells. 2021. V. 10. P. 3129. https://doi.org/10.3390/cells10113129
  6. 6. Facchinetti F., Bluthgen M.V., Tergemina-Clain G., Faivre L., Pignon J.P., Planchard D., Remon J., Soria J.C., Lacroix L., Besse B. // Lung Cancer. 2017. V. 112. P. 62–68. https://doi.org/10.1016/j.lungcan.2017.06.016
  7. 7. Mazzaschi G., Leonetti A., Minari R., Gnetti L., Quaini F., Tiseo M., Facchinetti F. // Curr. Treat. Options Oncol. 2021. V. 22. P. 96. https://doi.org/10.1007/s11864-021-00891-8
  8. 8. Zhang C.Y., Sun H., Su J.W., Chen Y.Q., Zhang S.L., Zheng M.Y., Li Y.F., Huang J., Zhang C., Tai Z.X., Cai M., Zhang X.C., Su J., Xu C.R., Yan H.H., Chen H.J., Wu Y.L., Yang J.J. // Lung Cancer. 2023. V. 175. P. 68–78. https://doi.org/10.1016/j.lungcan.2022.11.016
  9. 9. Jumaniyazova E.D., Sentyabreva A.V., Kosyreva A.M., Lokhonina A.V. // RUDN J. Med. 2024. V. 28. P. 413–426. https://doi.org/10.22363/2313-0245-2024-28-4-413-426
  10. 10. Kiseleva V., Gordon K., Vishnyakova P., Gantsova E., Elchaninov A., Fatkhudinov T. // Life (Basel). 2022. V. 12. P. 2071. https://doi.org/10.3390/life12122071
  11. 11. Jumaniyazova E., Smyk D., Vishnyakova P., Fatkhudinov T., Gordon K. // Life (Basel). 2023. V. 13. P. 30. https://doi.org/10.3390/LIFE13010030
  12. 12. Mirjolet C., Nicol A., Limagne E., Mura C., Richard C., Morgand V., Rousseau M., Boidot R., Ghiringhelli F., Noel G., Burckel H. // Sci. Rep. 2021. V. 11. P. 13444. https://doi.org/10.1038/s41598-021-92942-1
  13. 13. Qu Y., Zhang B., Liu S., Zhang A., Wu T., Zhao Y. // Cell. Mol. Immunol. 2010. V. 7. P. 419–427. https://doi.org/10.1038/cmi.2010.45
  14. 14. Gordon K., Gulidov I., Fatkhudinov T., Koryakin S., Kaprin A. // Int. J. Part. Ther. 2022. V. 9. P. 59– 69. https://doi.org/10.14338/IJPT-22-00017
  15. 15. Stankevicius V., Kuodyte K., Schveigert D., Bulotiene D., Paulauskas T., Daniunaite K., Suziedelis K. // Oncol. Lett. 2017. V. 13. P. 4190–4200. https://doi.org/10.3892/OL.2017.5877
  16. 16. Fasola C.E., Jones J.C., Huang D.D., Le Q.T., Hoppe R.T., Donaldson S.S. // Int. J. Radiat. Oncol. Biol. Phys. 2013. V. 86. P. 930–935. https://doi.org/10.1016/J.IJROBP.2013.04.035
  17. 17. Schaub L., Harrabi S.B., Debus J. // Br. J. Radiol. 2020. V. 93. P. 20200183. https://doi.org/10.1259/bjr.20200183
  18. 18. Kuwahara Y., Mori M., Kitahara S., Fukumoto M., Ezaki T., Mori S., Echigo S., Ohkubo Y., Fukumoto M. // Cancer Med. 2014. V. 3. P. 310–321. https://doi.org/10.1002/CAM4.185
  19. 19. Mardynsky Y.S., Gulidov I.A., Ivanov S.A., Kaprin A.D., Gordon K.B. // Radiat. Risk. 2024. V. 33. P. 40–54. https://doi.org/10.21870/0131-3878-2024-33-1-40-54
  20. 20. Hardie D.G., Alessi D.R. // BMC Biol. 2013. V. 11. Р. 36. https://doi.org/10.1186/1741-7007-11-36
  21. 21. Pierce S.E., Granja J.M., Corces M.R., Brady J.J., Tsai M.K., Pierce A.B., Tang R., Chu P., Feldser D.M., Chang H.Y., Bassik M.C., Greenleaf W.J., Winslow M.M. // Nat. Cell Biol. 2021. V. 23. P. 915– 924. https://doi.org/10.1038/S41556-021-00728-4
  22. 22. Urruticoechea A., Smith I.E., Dowsett M. // J. Clin. Oncol. 2005. V. 23. P. 7212–7220. https://doi.org/10.1200/JCO.2005.07.501
  23. 23. Oh M., Tanaka T., Kobayashi M., Furukawa T., Mori T., Kudo T., Fujieda S., Fujibayashi Y. // Nucl. Med. Biol. 2009. V. 36. P. 419–426. https://doi.org/10.1016/J.NUCMEDBIO.2009.01.016
  24. 24. van Gogh M., Garzon J.F.G., Sahin D., Knopfova L., Benes P., Boyman O., Jurisica I., Borsig L. // Cancer Immunol. Res. 2023. V. 11. P. 1432–1444. https://doi.org/10.1158/2326-6066.cir-22-0912
  25. 25. Andrés-Sánchez N., Fisher D., Krasinska L. // J. Cell Sci. 2022. V. 135. Р. jcs258932. https://doi.org/10.1242/jcs.258932
  26. 26. Mrouj K., Andrés-Sánchez N., Dubra G., Singh P., Sobecki M., Chahar D., Al Ghoul E., Aznar A.B., Prieto S., Pirot N., Bernex F., Bordignon B., Hassen- Khodja C., Villalba M., Krasinska L., Fisher D. // Proc. Natl. Acad. Sci. USA. 2021. V. 118. P. e2026507118. https://doi.org/10.1073/pnas.2026507118
  27. 27. Zhang Y.P., Guo Z.Q., Cai X.T., Rong Z.X., Fang Y., Chen J.Q., Zhuang K.M., Ruan M.J., Ma S.C., Lin L.Y., Han D.D., Li Y.S., Wang Y.Y., Wang J., Cao C.H., Tang X.R., Xie Q.K., Chen Y., Lin Y., Le Tan J., Yu Z.H., Wu Z.N., Wei W., Zheng D.Y., Zeng Y.J., Ruan Y.C., Xu Z.P., Gu J.Z., Xiao L.S., Liu L., Guan J., Bai X., Wu D.H., Dong Z.Y. // Cancer Cell. 2025. V. 43. Р. 856–874.e9. https://doi.org/10.1016/j.ccell.2025.02.024
  28. 28. Jung S., Jiang L., Zhao J., Shultz L.D., Greiner D.L., Bae M., Li X., Ordikhani F., Kuai R., Joseph J., Kasinath V., Elmaleh D.R., Abdi R. // Bioeng. Transl. Med. 2023. V. 8. P. e10273. https://doi.org/10.1002/btm2.10273
  29. 29. Exposito F., Redrado M., Houry M., Hastings K., Molero-Abraham M., Lozano T., Solorzano J.L., Sanz-Ortega J., Adradas V., Amat R., Redin E., Leon S., Legarra N., Garcia J., Serrano D., Valencia K., Robles-Oteiza C., Foggetti G., Otegui N., Felip E., Lasarte J.J., Paz-Ares L., Zugazagoitia J., Politi K., Montuenga L., Calvo A. // Cancer Res. 2023. V. 83. P. 2513–2526. https://doi.org/10.1158/0008-5472.CAN-22-2900
  30. 30. Lázaro S., Lorz C., Enguita A.B., Seller I., Paramio J.M., Santos M.// Cancers (Basel). 2022. V. 14. P. 3671. https://doi.org/10.3390/cancers14153671
  31. 31. Stankevicius V., Kuodyte K., Schveigert D., Bulotiene D., Paulauskas T., Daniunaite K., Suziedelis K. // Oncol. Lett. 2017. V. 13. P. 4190–4200. https://doi.org/10.3892/ol.2017.5877
  32. 32. Vallabhaneni S., Liu J., Morel M., Wang J., De-Mayo F.J., Long W. // Mol. Oncol. 2022. V. 16. P. 1184–1199. https://doi.org/10.1002/1878-0261.13173
  33. 33. Long L.L., Ma S.C., Guo Z.Q., Zhang Y.P., Fan Z., Liu L.J., Liu L., Han D.D., Leng M.X., Wang J., Guo X.J., Le Tan J., Cai X.T., Lin Y., Pan X., Wu D.H., Bai X., Dong Z.Y. // Cancer Res. 2023. V. 83. P. 568–581. https://doi.org/10.1158/0008-5472.can-22-1740
  34. 34. Bai X., Guo Z.Q., Zhang Y.P., Fan Z.-Z., Liu L.J., Liu L., Long L.L., Ma S.C., Wang J., Fang Y., Tang X.R., Zeng Y.J., Pan X., Wu D.H., Dong Z.Y. // Nat. Commun. 2023. V. 14. P. 1247. https://doi.org/10.1038/s41467-023-36892-4
  35. 35. Kitajima S., Tani T., Springer B.F., Campisi M., Osaki T., Haratani K., Chen M., Knelson E.H., Mahadevan N.R., Ritter J., Yoshida R., Köhler J., Ogino A., Nozawa R.S., Sundararaman S.K., Thai T.C., Homme M., Piel B., Kivlehan S., Obua B.N., Purcell C., Yajima M., Barbie T.U., Lizotte P.H., Jänne P.A., Paweletz C.P., Gokhale P.C., Barbie D.A. // Cancer Cell. 2022. V. 40. P. 1128–1144.e8. https://doi.org/10.1016/j.ccell.2022.08.015
  36. 36. He Q., Sun C., Pan Y. // Sci Rep. 2024. V. 14. P. 100. https://doi.org/10.1038/s41598-023-50703-2
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library