ОБНБиоорганическая химия Russian Journal of Bioorganic Chemistry

  • ISSN (Print) 0132-3423
  • ISSN (Online) 1998-2860

МОЛЕКУЛЯРНЫЕ ЗОНДЫ ДЛЯ ВИЗУАЛИЗАЦИИ НИКОТИНОВОГО АЦЕТИЛХОЛИНОВОГО РЕЦЕПТОРА НА ОСНОВЕ ТРЕХПЕТЕЛЬНЫХ ТОКСИНОВ ЗМЕЙ И КРАСНОГО ФЛУОРЕСЦЕНТНОГО БЕЛКА

Код статьи
S19982860S0132342325050107-1
DOI
10.7868/S1998286025050107
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 51 / Номер выпуска 5
Страницы
853-862
Аннотация
Визуализация макромолекулярных комплексов – важная задача современной биоорганической химии, которая может быть реализована с помощью различных методологических подходов. Наиболее широко используются методы с применением радиоактивно- и флуоресцентно-меченых лигандов. В рамках данного проекта разработаны молекулярные зонды, которые представляют собой гибридные конструкции, включающие один из трех змеиных токсинов (α-бунгаротоксин, α-кобратоксин или нейротоксин NT-II) в сочетании с красным флуоресцентным белком mKate2. Эти химерные белки были получены в бактериальной системе экспрессии и очищены с использованием гель-фильтрации. С помощью конкурентного радиолигандного анализа с радиоактивно-меченым α-бунгаротоксином установлено, что полученные зонды обладают высоким сродством к никотиновому ацетилхолиновому рецептору электрического органа ската : значения концентраций полумаксимального ингибирования находятся в наномолярном диапазоне. Флуоресцентные зонды были успешно использованы для визуализации ацетилхолиновых рецепторов на поверхности клеток линии SH-SYSY.
Ключевые слова
ионный канал ацетилхолиновый рецептор холинорецептор лиганд нейротоксин радиолигандный анализ флуоресцентная микроскопия
Дата публикации
01.05.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
1

Библиография

  1. 1. Corringer P.J., Novère N.L., Changeux J.P. // Annu. Rev. Pharmacol. Toxicol. 2000. V. 40. P. 431–458. https://doi.org/10.1146/annurev.pharmtox.40.1.431
  2. 2. Karlin A. // Nat. Rev. Neurosci. 2002. V. 3. P. 102–114. https://doi.org/10.1038/nrn731
  3. 3. Cecchini M., Corringer P.-J., Changeux J.-P. // Annu. Rev. Biochem. 2024. V. 93. P. 339–366. https://doi.org/10.1146/annurev-biochem-030122-033116
  4. 4. Lukas R.J., Changeux J.P., Le Novère N., Albuquerque E.X., Balfour D.J., Berg D.K., Bertrand D., Chiappinelli V.A., Clarke P.B., Collins A.C., Dani J.A., Grady S.R., Kellar K.J., Lindstrom J.M., Marks M.J., Quik M., Taylor P.W., Wonnacott S. // Pharmacol. Rev. 1999. V. 51. P. 397–401. https://doi.org/10.1016/S0031-6997 (24)01406-6
  5. 5. Hone A.J., McIntosh J.M. // Pharmacol. Res. 2023. V. 190. P. 106715. https://doi.org/10.1016/j.phrs.2023.106715
  6. 6. Dutertre S., Lewis R.J. // Biochem. Pharmacol. 2006. V. 72. P. 661–670. https://doi.org/10.1016/j.bcp.2006.03.027
  7. 7. Chang C., Lee C. // Arch. Int. Pharmacodyn. Ther. 1963. V. 144. P. 241–257.
  8. 8. Karlsson E., Eaker D., Ponterius G. // Biochim. Biophys. Acta. 1972. V. 257. P. 235–248. https://doi.org/10.1016/0005-2795 (72)90275-9
  9. 9. Surin A.M., Pluzhnikov K.A., Utkin Y.N., Karlsson E., Tsetlin V.I. // Bioorg. Khim. 1983. V. 9. P. 756–767.
  10. 10. Utkin Y.N. // Toxicon. 2013. V. 62. P. 50–55. https://doi.org/10.4331/wjbc.v10.i1.17
  11. 11. Kini R.M., Doley R. // Toxicon. 2010. V. 56. P. 855–867. https://doi.org/10.1016/j.toxicon.2010.07.010
  12. 12. Kini R.M., Koh C.Y. // Biochem. Pharmacol. 2020. V. 181. P. 114105. https://doi.org/10.1016/j.bcp.2020.114105
  13. 13. Kuzmenkov A.I., Vassilevski A.A. // Neurosci. Lett. 2018. V. 679. P. 15–23. https://doi.org/10.1016/j.neulet.2017.10.050
  14. 14. O’Brien R.D., Eldefrawi M.E., Eldefrawi A.T. // Annu. Rev. Pharmacol. 1972. V. 12. P. 19–34. https://doi.org/10.1146/annurev.pa.12.040172.000315
  15. 15. Крюкова Е.В., Иванов Д.А., Копылова Н.В., Старков В.Г., Андреева Т.В., Иванов И.А., Цетлин В.И., Уткин Ю.Н. // Биоорг. химия. 2023. Т. 49. С. 296–305. https://doi.org/10.31857/S0132342323030156
  16. 16. Sahoo H. // RSC Adv. 2012. V. 2. P. 7017. https://doi.org/10.1039/C2RA20389H
  17. 17. Axelrod D. // Proc. Natl. Acad. Sci. USA. 1980. V. 77. P. 4823–4827. https://doi.org/10.1073/pnas.77.8.4823
  18. 18. Anderson M.J., Cohen M.W. // J. Physiol. 1974. V. 237. P. 385–400. https://doi.org/10.1113/jphysiol.1974.sp010487
  19. 19. Tsetlin V.I., Karlsson E., Arseniev A.S., Utkin Y.N., Surin A.M., Pashkov V.S., Pluzhnikov K.A., Ivanov V.T., Bystrov V.F., Ovchinnikov Y.A. // FEBS Lett. 1979. V. 106. P. 47–52. https://doi.org/10.1016/0014-5793 (79)80692-4
  20. 20. Kuzmenkov A.I., Nekrasova O.V., Kudryashova K.S., Peigneur S., Tytgat J., Stepanov A.V., Kirpichnikov M.P., Grishin E.V., Feofanov A.V., Vassilevski A.A. // Sci. Rep. 2016. V. 6. P. 33314. https://doi.org/10.1038/srep33314
  21. 21. Chudakov D.M., Matz M.V., Lukyanov S.A., Lukyanov K.A. // Physiol. Rev. 2010. V. 90. P. 1103–1163. https://doi.org/10.1152/physrev.00038.2009
  22. 22. Mishin A.S., Belousov V.V., Solntsev K.M., Lukyanov K.A. // Curr. Opin. Chem. Biol. 2015. V. 27. P. 1–9. https://doi.org/10.1016/j.cbpa.2015.05.002
  23. 23. Kasheverov I.E., Kuzmenkov A.I., Kudryavtsev D.S., Chudetskiy I.S., Shelukhina I.V., Barykin E.P., Ivanov I.A., Siniavin A.E., Ziganshin R.H., Baranov M.S., Tsetlin V.I., Vassilevski A.A., Utkin Y.N. // Front. Mol. Biosci. 2021. V. 8. P. 753283. https://doi.org/10.3389/fmolb.2021.753283
  24. 24. Shcherbo D., Murphy C.S., Ermakova G.V., Solovieva E.A., Chepurnykh T.V., Shcheglov A.S., Verkhusha V.V., Pletnev V.Z., Hazelwood K.L., Roche P.M., Lukyanov S., Zaraisky A.G., Davidson M.W., Chudakov D.M. // Biochem. J. 2009. V. 418. P. 567. https://doi.org/10.1042/BJ20081949
  25. 25. Cormack B.P., Valdivia R.H., Falkow S. // Gene. 1996. V. 173. P. 33–38. https://doi.org/10.1016/0378-1119 (95)00685-0
  26. 26. Chandna R., Tae H., Seymour V.A., Chathrath S., Adams D.J., Kini R.M. // FASEB Bioadv. 2019. V. 1. P. 115–131. https://doi.org/10.1096/fba.1027
  27. 27. Utkin Y.N., Kukhtina V.V., Kryukova E.V., Chiodini F., Bertrand D., Methfessel C., Tsetlin V.I. // J. Biol. Chem. 2001. V. 276. P. 15810–15815. https://doi.org/10.1074/jbc.M100788200
  28. 28. Tsetlin V.I., Kasheverov I.E., Utkin Y.N. // J. Neuro-chem. 2021. V. 158. P. 1223–1235. https://doi.org/10.1111/jnc.15123
  29. 29. Nirthanan S., Gwee M.C.E. // J. Pharmacol. Sci. 2004. V. 94. P. 1–17. https://doi.org/10.1254/jphs.94.1
  30. 30. Rahman M., Teng J., Worrell B.T., Noviello C.M., Lee M., Karlin A., Stowell M.H., Hibbs R.E. // Neuron. 2020. V. 106. P. 952–962.e5. https://doi.org/10.1016/j.neuron.2020.03.012
  31. 31. Shelukhina I.V., Kryukova E.V., Lips K.S., Tsetlin V.I., Kummer W. // J. Neurochem. 2009. V. 109. P. 1087–1095. https://doi.org/10.1111/j.1471-4159.2009.06033.x
  32. 32. Lukas R.J., Norman S.A., Lucero L. // Mol. Cell. Neurosci. 1993. V. 4. P. 1–12. https://doi.org/10.1006/mcne.1993.1001
  33. 33. Ravdin P., Axelrod D. // Anal. Biochem. 1977. V. 80. P. 585–592. https://doi.org/10.1016/0003-2697 (77)90682-0
  34. 34. Yang Y., Tan Y., Zhangsun D., Zhu X., Luo S. // ACS Chem. Neurosci. 2021. V. 12. P. 3662–3671. https://doi.org/10.1021/acschemneuro.1c00392
  35. 35. Muttenthaler M., Nevin S.T., Inserra M., Lewis R.J., Adams D.J., Alewood P. // Aust. J. Chem. 2020. V. 73. P. 327–333. https://doi.org/10.1071/ch19456
  36. 36. Lebedev D.S., Kryukova E.V., Ivanov I.A., Egorova N.S., Timofeev N.D., Spirova E.N., Tufanova E.Y., Siniavin A.E., Kudryavtsev D.S., Kasheverov I.E., Zouridakis M., Katsarava R., Zavradashvili N., Iagorshvili I., Tzartos S.J., Tsetlin V.I. // Mol. Pharmacol. 2019. V. 96. P. 664–673. https://doi.org/10.1124/mol.119.117713
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека