- PII
- S19982860S0132342325040107-1
- DOI
- 10.7868/S1998286025040107
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 51 / Issue number 4
- Pages
- 654-666
- Abstract
- The molecular types of membrane lipids of the sea anemone Exaiptasia diaphana and the molecular types of glycolipids of its symbionts were studied using the method of high-performance liquid chromatography with mass spectrometric detection. A total of 82 molecular types of E. diaphana glycerophospholipids were identified, the main ones being 16:0/22:6 cholinoglycerophospholipid (PC), 18:1e/20:4 and 18:1e/20:5 ethanolaminoglycerophospholipids (PE), 18:0/22:4 serinoglycerophospholipid (PS), 18:0/22:4 inositoglycerophospholipid (PI), 18:2b/16:0 ceramidaminoethylphosphonate (CAEP). 36 molecular types of glycolipids have been identified in symbionts. The main molecular species were 18:4/18:5 monohalactosyldiacylglycerol (MGDG), 18:3/18:5 and 18:4/18:4 digalactosyldiacylglycerols DGDG, 14:0/16:0 sulfoquinovosyldiacylglycerol (SQDG). Molecular genetic analysis revealed that all E. diaphana colonies contained the following dinoflagellates: Breviolum minutum, Cladocopium thermophilum, and Gerakladium endoclionum. The profile of the molecular types of lipids of the host organism can act as a chemotaxonomic feature, and galactolipids of symbionts indicate resistance to changes in seawater temperature. This study contributes to the development of lipidomics of marine organisms of the phylum Cnidaria.
- Keywords
- морские анемоны фосфолипиды гликолипиды тандемная масс-спектрометрия липидомика молекулярные виды липидов
- Date of publication
- 28.01.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 10
References
- 1. Bogdanov M., Dowhan W. // J. Biol. Chem. 1999. V. 274. P. 36827–36830. https://doi.org/10.1074/jbc.274.52.36827
- 2. Daly M., Brugler M.R., Cartwright P., Collins A.G., Davson M.N., Fautin D.G., France S.C., Mcfadden C.S., Opresko D.M., Rodriguez E., Romano S.L., Stake J.L. // Zootaxa. 2007. V. 1668. P. 127–182. https://doi.org/10.5281/zenodo.180149
- 3. Madio B., King G.F., Undheim E.A.B. // Mar. Drugs. 2019. V. 17. P. 325. https://doi.org/10.3390/md17060325.
- 4. Garrett T.A., Schmeitzel J.L., Klein J.A., Hwang J.J., Schwarz J.A. // PLoS One. 2013. V. 8. P. e57975. https://doi.org/10.1371/journal.pone.0057975
- 5. Muscatine L. // Science. 1967. V. 156. P. 516–519. https://doi.org/10.1126/science.156.3774.516
- 6. Dungan A.M., Hartman L.M., Tortorelli G., Belderok R., Lamb A.M., Pisan L., McFadden G.I., Blackall L.L., van Oppen M.J.H. // Symbiosis. 2020. V. 80. P. 195–206. https://doi.org/10.1007/s13199-020-00665-0
- 7. Weis V.M., Davy S.K., Hoegh-Guldberg O., Rodriguez-Lanetty M., Pringle J.R. // Trends Ecol. Evol. 2008. V. 23. P. 369–376. https://doi.org/10.1016/j.tree.2008.03.004
- 8. Yamashiro H., Okui H., Higa H., Chinen I., Sakai K. // Comp. Biochem. Phys. B. 1999. V. 122. P. 397–407. https://doi.org/10.1016/S0305-0491 (99)00014-0
- 9. Sikorskaya T.V., Imbs A.B. // Russ. J. Bioorg. Chem. 2020. V. 46. P. 643–656. https://doi.org/10.1134/S1068162020050234
- 10. Bishop D.G., Kenrick J.R. // Lipids. 1980. V. 15. P. 799–804. https://doi.org/10.1007/BF02534368
- 11. Imbs A.B., Rybin V.G., Kharlamenko V.I., Dang L.P.T., Nguyen N.T., Pham K.M., Pham L.Q. // Russ. J. Mar. Biol. 2015. V. 41. P. 461–467. https://doi.org/10.1134/S1063074015060048
- 12. Sikorskaya T.V. // Mar. Drugs. 2023. V. 21. P. 335. https://doi.org/10.3390/md21060335
- 13. Rosset S., Koster G., Brandsma J., Hunt A.N., Postle A.D., D’Angelo C. // Coral Reefs. 2019. V. 38. P. 1241–1253. https://doi.org/10.1007/s00338-019-01865-x
- 14. Sikorskaya T.V., Efimova K.V., Imbs A.B. // Phytochemistry. 2021. V. 181. P. 112579. https://doi.org/10.1016/j.phytochem.2020.112579
- 15. Weis V.M. // Integr. Comp. Biol. 2019. V. 59. P. 845–855. https://doi.org/10.1093/icb/icz067
- 16. Tehernov D., Gorbunov M.Y., de Vargas C., Narayan Yadav S., Milligan A.J., Häggblom M., Falkowski P.G. // Proc. Natl. Acad. Sci. USA. 2004. V. 37. P.13531–13535. https://doi.org/10.1073/pnas.0402907101
- 17. Sikorskaya T.V., Ermolenko E.V., Gimanova T.T., Boroda A.V., Efimova K.V., Bogdanov M. // Commun. Biol. 2024. V. 7. P. 878. https://doi.org/10.1038/s42003-024-06578-8
- 18. Sikorskaya T.V., Ermolenko E.V., Efimova K.V., Dang L.T.P. // Mar. Drugs. 2022. V. 20. P. 485. https://doi.org/10.3390/md20080485
- 19. Dean J.M., Lodhi I.J. // Protein Cell. 2018. V. 9. P. 196–206. https://doi.org/10.1007/s13238-017-0423-5
- 20. Lohner K. // Chem. Phys. Lipids. 1996. V. 81. P. 167–184. https://doi.org/10.1016/0009-3084 (96)02580-7
- 21. Kay J.G., Fairn G.D. // Cell Commun. Signal. 2019. V. 17. P. 126. https://doi.org/10.1186/s12964-019-0438-z
- 22. Tomonaga N., Manabe Y., Sugawara T. // Lipids. 2017. V. 52. P. 353–362. https://doi.org/10.1007/s11745-011-3556-y
- 23. Chintalahti M., Truax R., Stout R., Portier R., Losso J.N. // J. Agric. Food Chem. 2009. V. 57. P. 5201–5210. https://doi.org/10.1021/jf803818y
- 24. Garrett T.A., Hwang J., Schmeitzel J.L., Schwarz J. // FASEB J. 2011. V. 25. P. 938.2. https://doi.org/10.1096/fasebj.25.1_supplement.938.2
- 25. Imbs A.B., Latyshev N.A., Dautova T.N., Latypov Y.Y. // Mar. Ecol. Prog. Ser. 2010. V. 409. P. 65–75. https://doi.org/10.3354/meps08622
- 26. Flaim G., Oberlegger U., Anest A., Guella G. // Freshwater Biol. 2014. V. 59. P. 985–997. https://doi.org/10.1111/fwb.12321
- 27. Känzler K., Eichenberger W., Radunz A. // Z. Naturforsch. C. J. Biosci. 1997. V. 52. T. 487–495.
- 28. Höizl G., Dörmann P. // Annu. Rev. Plant Biol. 2019. V. 70. P. 51–81. https://doi.org/10.1146/annurev-arplant-050718-100202
- 29. Boudière L., Michaud M., Petroutsos D., Rébeille F., Falconer D., Bastien O., Roy S., Finazzi G., Rolland N., Jouhet J., Block M.A., Maréchal E. // Biochim. Biophys. Acta. 2014. V. 1837. P. 470–480. https://doi.org/10.1016/j.bbabio.2013.09.007
- 30. Botana T.M., Chaves-Filho A.B., Inague A., Güth, A.Z., Saldanha-Correa F., Müller M.N., Sumida P.Y.G., Miyamoto S., Kellermann M.Y., Valentine R.C., Yoshinaga M.Y. // Limnol. Oceanogr. 2022. V. 67. P. 1456–1469. https://doi.org/10.1002/lno.12094
- 31. Baumgartner S., Simakov O., Esherick L.Y., Liew Y.J., Lehnert E.M., Michell C.T., Li Y., Hambleton E.A., Guse A., Oates M.E., Gough J., Weis V.M., Aranda M., Pringle J.R., Voolstra C.R. // Proc. Natl. Acad. Sci. USA. 2015. V. 112. P. 11893–11898. https://doi.org/10.1073/pnas.1513318112
- 32. Thornhill D.J., Xiang Y., Pettay D.T., Zhong M., Santos S.R. // Mol. Ecol. 2013. V. 22. P. 4499–4515. https://doi.org/10.1111/mec.12416
- 33. Nunez-Pons L., Bertocci I., Baghdasarian G. // Mar. Environ. Res. 2017. V. 130. P. 303–314. https://doi.org/10.1016/j.marenvres.2017.08.005
- 34. Ramsby B.D., Hill M.S., Thornhill D.J., Steenhutzen S.F., Achlatis M., Lewis A.M., LaJeunesse T.C. // J. Psychol. 2017. V. 53. P. 951–960. https://doi.org/10.1111/jpy.12576
- 35. Folch J., Lees M., Sloane-Stanley G.A. // J. Biol. Chem. 1957. V. 226. P. 497–509. https://doi.org/10.1016/S0021-9258 (18)64849-5
- 36. Sikorskaya T.V., Ermolenko E.V., Imbs A.B. // J. Exp. Mar. Biol. Ecol. 2020. V. 524. P. 151295. https://doi.org/10.1016/j.jembe.2019.151295
- 37. Imbs A.B., Dang L.P.T., Nguyen K.B. // PLoS One. 2019. V. 14. P. e0215759. https://doi.org/10.1371/journal.pone.0215759
- 38. Scholin C.A., Herzog M., Sogin M., Anderson D.M. // J. Psychol. 1994. V. 30. P. 999–1011. https://doi.org/10.1111/j.0022-3646.1994.00999.x
- 39. van Oppen M.J., McDonald B.J., Willis B., Miller D.J. // Mol. Biol. Evol. 2001. V. 18. P. 1315–1329. https://doi.org/10.1093/oxfordjournals.molbev.a003916
- 40. Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J. // J. Mol. Biol. 1990. V. 215. P. 403–410. https://doi.org/10.1016/S0022-2836 (05)80360-2
- 41. Katoh K., Rozewicki J., Yamada K.D. // Brief Bioinform. 2019. V. 20. P. 1160–1166. https://doi.org/10.1093/bib/bbx108
- 42. Hume B.C., D’Angelo C., Smith E.G., Stevens J.R., Burt J., Wedermann J. // Sci. Rep. 2015. V. 5. P. 8562. https://doi.org/10.1038/srep08562
- 43. Puillandre N., Brouillet S., Achaz G. // Mol. Ecol. Resour. 2021. V. 21. P. 609–620. https://doi.org/10.1111/1755-0998.13281
- 44. Nguyen L.T., Schmidt H.A., von Haeseler A., Minh B.Q. // Mol. Biol. Evol. 2015. V. 32. P. 268–274. https://doi.org/10.1093/molbev/msu300
- 45. Kalyaanamoorthy S., Minh B.Q., Wong T.K.F., von Haeseler A., Jermlin L.S. // Nat. Methods. 2017. V. 14. P. 587–589. https://doi.org/10.1038/nmeth.4285
- 46. Guindon S., Dufayard J.F., Lefort V., Anisimova M., Hordijk W., Gascuel O. // Syst. Biol. 2010. V. 59. P. 307–321. https://doi.org/10.1093/sysbio/syq010
- 47. Hoang D.T., Chermomor O., von Haeseler A., Minh B.Q., Vinh L.S. // Mol. Biol. Evol. 2018. V. 35. P. 518–522. https://doi.org/10.1093/molbev/msx281
- 48. Anisimova M., Gil M., Dufayard J.F., Dessimoz C., Gascuel O. // Syst. Biol. 2011. V. 60. P. 685–699. https://doi.org/10.1093/sysbio/syr041
- 49. Viso A.C., Marty J.C. // Phytochemistry. 1993. V. 34. P. 1521–1533. https://doi.org/10.1016/s0031-9422 (00)90839-2
- 50. Rezanka T., Siristova L., Matoullková D., Sigler K. // Lipids. 2011. V. 46. P. 765–780. https://doi.org/10.1007/s11745-011-3556-y