RAS BiologyБиоорганическая химия Russian Journal of Bioorganic Chemistry

  • ISSN (Print) 0132-3423
  • ISSN (Online) 1998-2860

C-Terminal Domain of Bacillus cereus Hemolysin II is Capable of Forming Homo- and Hetero-Oligomeric Forms of Toxin on the Membrane Surface

PII
S19982860S0132342325040071-1
DOI
10.7868/S1998286025040071
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 51 / Issue number 4
Pages
627-635
Abstract
Hemolysin II (HlyII) is one of the key pathogenic factors of the opportunistic gram-positive bacterium Bacillus cereus. HlyII lyses target cells by forming pores on membranes. HlyII belongs to the group of β-pore-forming toxins. A distinctive feature of HlyII is the presence of a C-terminal domain of 94 amino acid residues (HlyIICTD). It was shown that under slightly acidic conditions (pH 5.0), corresponding to the near-membrane region, the C-terminal domains, both by themselves and as part of the toxin, form stable complexes consisting of full-length and truncated toxin molecules. HlyII, HlyIILCTD (large C-terminal fragment Met225–Ile412) and HlyIICTD were obtained using recombinant producer strains Escherichia coli BL21(DE3). Biotinylation of HlyIICTD was carried out using N-hydroxysuccinimide ester of biotin. The interaction of HlyIICTD with HlyIICTD, HlyIILCTD, and HlyII, as well as the interaction of HlyIICTD with erythrocyte membranes, were studied by enzyme-linked immunosorbent assay and immunoblotting using both horseradish peroxidase-conjugated streptavidin and monoclonal antibodies against HlyII. Under slightly acidic conditions, HlyIICTD interacted with both the HlyIICTD domain within the full-length toxin and with the HlyIICTD protein. The interaction of HlyIICTD with the erythrocyte membrane increased fold in the presence of the toxin. The property of the C-terminal domain to form complexes with each other was revealed, regardless of whether it is part of the full-length toxin, the large C-terminal fragment, or the short HlyIICTD under conditions corresponding to those existing near the cell membrane (pH 5.0). The toxin in the peri membrane region exists in a partially molten globule state, in which the C-terminal domains of the monomers can bind to each other, increasing the local concentration of full-length toxins.
Keywords
порообразующий токсин C-концевой домен гемолизина II Bacillus cereus конформация белков плазматическая мембрана иммуноферментный анализ
Date of publication
12.02.2025
Year of publication
2025
Number of purchasers
0
Views
13

References

  1. 1. Logan N.A. // J. Appl. Microbiol. 2012. V. 112. P. 417–429. https://doi.org/10.1111/j.1365-2672.2011.05204.x
  2. 2. Thery M., Cousin V.L., Tissieres P., Enault M., Morin L. // Front. Pediatr. 2022. V. 10. P. 978250. https://doi.org/10.3389/fped.2022.978250
  3. 3. Ramarao N., Sanchis V. // Toxins. 2013. V. 5. P. 1119–1139. https://doi.org/10.3390/toxins5061119
  4. 4. Miles G., Bayley H., Cheley S. // Protein Sci. 2002. V. 11. P. 1813–1824. https://doi.org/10.1110/ps.0204002
  5. 5. Hu H., Liu M., Sun S. // Drug Des. Dev. Ther. 2021. V. 15. P. 3773–3781. https://doi.org/10.2147/DDDT.S322393
  6. 6. Patino-Navarrete R., Sanchis V. // Res. Microbiol. 2017. V. 168. P. 309–318. https://doi.org/10.1016/j.resmic.2016.07.002
  7. 7. Cadot C., Tran S.L., Yignaud M.L., de Buyser M.L., Kolsio A.B., Brisabois A., Nguyen-Thé C., Lerechts D., Guinebretière M.H., Ramarao N. // J. Clin. Microbiol. 2010. V. 48. P. 1358–1365. https://doi.org/10.1128/JCM.02123-09
  8. 8. Rudenko N.V., Karatovskaya A.P., Zamyatina A.V., Siunov A.V., Andreeva-Kovalevskaya Z.A., Nagel A.S., Brovko F.A., Solonin A.S. // Russ. J. Bioorg. Chem. 2020. V. 46. P. 321–326. https://doi.org/10.1134/S1068162020030188
  9. 9. Rudenko N., Siunov A., Zamyatina A., Melnik B., Nagel A., Karatovskaya A., Borisova M., Shepelyakovskaya A., Andreeva-Kovalevskaya Zh., Kolesnikov A., Surin A., Brovko F., Solonin A. // Int. J. Biol. Macromol. 2022. V. 200. P. 416–427. https://doi.org/10.1016/j.ijbiomac.2022.01.013
  10. 10. Kaplan A.R., Kaus K., De S., Olson R., Alexandrescu A.T. // Sci. Rep. 2017. V. 1. P. 3277. https://doi.org/10.1038/s41598-017-02917-4
  11. 11. Kaplan A.R., Maciejewski M.W., Olson R., Alexandrescu A.T. // Biomol. NMR Assign. 2014. V. 2. P. 419–423. https://doi.org/10.1007/s12104-013-9530-2
  12. 12. Nagel A.S., Rudenko N.V., Luchkina P.N., Karatovskaya A.P., Zamyatina A.V., Andreeva-Kovalevskaya Z.I., Siunov A.V., Brovko F.A., Solonin A.S. // Molecules. 2023. V. 28. P. 3581. https://doi.org/10.3390/molecules28083581
  13. 13. Nagel A.S., Vetrova O.S., Rudenko N.V., Karatovskaya A.P., Zamyatina A.V., Andreeva-Kovalevskaya Z.I., Salyamov V.I., Egorova N.A., Siunov A.V., Ivanova T.D., Boziev K.M., Brovko F.A., Solonin A.S. // Int. J. Mol. Sci. 2024. V. 25. P. 5327. https://doi.org/10.3390/ijms25105327
  14. 14. Bychkova V.E., Dolgikh D.A., Balobanov V.A., Finkelstein A.V. // Molecules. 2022. V. 27. P. 4361. https://doi.org/10.3390/molecules27144361.
  15. 15. Engelman D.M. // Nature. 2005. V. 438. P. 578–580. https://doi.org/10.1038/nature04394
  16. 16. Von Meer G., Voelker D.R., Feigenson G.W. // Mol. Cell Biol. 2008. V. 9. P. 112–124. https://doi.org/10.1038/nrm2330
  17. 17. Eisenberg M., Gresdff T., Riccio T., McLaughlin S. // Biochemistry. 1979. V. 18. P. 5213–5223. https://doi.org/10.1021/bi00594a028
  18. 18. Prats M., Teissie J., Toccane J.F. // Nature. 1986. V. 322. P. 756–758. https://doi.org/10.1038/322756a0
  19. 19. Wintiski A.P., McLaughlin A.C., McDaniel R.V., Eisenberg M., McLaughlin S. // Biochemistry. 1986. V. 25. P. 8206–8214. https://doi.org/10.1021/bi00373a013
  20. 20. Galassi V.V., Wilke N. // Membranes (Basel). 2021. V. 11. P. 478. https://doi.org/10.3390/membranes11070478
  21. 21. Ptitsyn O.B. // Adv. Protein Chem. 1995. V. 47. P. 83–229. https://doi.org/10.1016/s0065-3233 (08)60546-x
  22. 22. Bychkova V.E., Ptitsyn O.B. // Chemtracts Biochem. Mol. Biol. 1993. V. 4. P. 133–163.
  23. 23. Kaplan A.R. // Adventures in structural and exploring protein conformational plasticity by NMR. Doctoral Dissertations, Connecticut: University of Connecticut, Storrs, 2019. 129 pp.
  24. 24. Andreeva Z.I., Nesterenko V.F., Yarkov I.S., Budarina Z.I., Sineva E.V., Solonin A.S. // Protein Expr. Purif. 2006. V. 47. P. 186–193. https://doi.org/10.1016/j.pep.2005.10.030
  25. 25. Chang S.F., Chen C.N., Lin J.C., Wang H.E., Mori S., Li J.J., Yen C.K., Hsu C.Y., Fung C.P., Chong P.C., Leng C.H., Ding Y.J., Chang F.Y., Siu L.K. // Cells. 2020. V. 9. P. 1183. https://doi.org/10.3390/cells9051183
  26. 26. Blandine G., Popoff M.R // Biol. Cell. 2006. V. 98. P. 667–678. https://doi.org/10.1042/BC20050082
  27. 27. Peraro M.D., van der Goot F.G. // Nat. Rev. Microbiol. 2015. V. 14. P. 77–92. https://doi.org/10.1038/nrmicro.2015.3
  28. 28. Margheritis E., Kappelloff S., Cosentino K. // Int. J. Mol. Sci. 2023. V. 24. P. 4528. https://doi.org/10.3390/ijms24054528
  29. 29. Iacovache I., Bischofberger M., van der Goot F.G. // Curr. Opin. Struct. Biol. 2010. V. 20. P. 241–246. https://doi.org/10.1016/j.sbi.2010.01.013
  30. 30. Li Y., Li Y., Mengist H.M., Shi C., Zhang C., Wang B., Li T., Huang Y., Xu Y., Jin T. // Toxins (Basel). 2021. V. 13. P. 128. https://doi.org/10.3390/toxins13020128
  31. 31. Laemmli U.K. // Nature. 1970. V. 5259. P. 680–685. https://doi.org/10.1038/227680a0
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library