RAS BiologyБиоорганическая химия Russian Journal of Bioorganic Chemistry

  • ISSN (Print) 0132-3423
  • ISSN (Online) 1998-2860

Searching for Possible Sites of Electrophils Conjugation with Biomolecules Using Molecular Modeling Methods

PII
S19982860S0132342325030129-1
DOI
10.7868/S1998286025030129
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 51 / Issue number 3
Pages
496-515
Abstract
The ability to rapidly form adducts with nucleophilic groups of proteins, nucleic acids and lipids largely determines the toxic effects of electrophiles. Considering that the number of toxic electrophiles is practically unlimited, and they can form adducts with many molecular targets, a purely empirical approach to characterizing the adductome is obviously unproductive. The aim of this study is to develop a method for primary in silico assessment of the probability of conjugation of electrophiles with a particular modification site. For the model group of electrophiles, the quantum-chemical indices were calculated using the density functional theory method, and the molecular docking method was used to search for priority sites of covalent binding of the studied compounds. Based on the obtained results, a scale for assessing the hardness of electrophiles was developed and an algorithm for computer selection of possible conjugation sites of electrophiles with biological macromolecules was compiled.
Keywords
электрофилы аддукты теория функционала плотности квантово-химические индексы молекулярный докинг
Date of publication
07.12.2025
Year of publication
2025
Number of purchasers
0
Views
6

References

  1. 1. Pivotal Role of Mass Spectrometry for the Assessment of Exposure to Reactive Chemical Contaminants: From the Exposome to the Adductome / Debrauwer L., Mervant L., Laprevote,O., Jamin E.L. Eds. / Wiley Periodicals LLC, 2024.
  2. 2. Knapen M.F., Zusterzeel P.L., Peters W.H., Steegers E.A. // Eur. J. Obstet. Gynecol. Reprod. Biol. 1999. V. 82. P. 171-184. https://doi.org/10.1016/s0301-2115 (98)00242-5
  3. 3. Blum M.M., Schmeißer W., Dentzel M., Thiermann H., John H. // Anal. Bioanal. Chem. 2024. V. 416. P. 5791-5804. https://doi.org/10.1007/s00216-024-05501-8
  4. 4. Reuter, H., Steinritz, D., Worek, F., John H. // Anal. Bioanal. Chem. 2025. V. 417. P. 1833-1845. https://doi.org/10.1007/s00216-025-05762-x
  5. 5. Xie Z., Chen J.Y., Gao H., Keith R.J., Bhatnagar A., Lorkiewicz P., Srivastava S. // Environ. Sci. Technol. 2023. V. 57. P. 10563-10573. https://doi.org/10.1021/acs.est.2c09554
  6. 6. La Barbera G., Shuler M.S., Beck S.H., Ibsen P.H., Lindberg L.J., Karstensen J.G., Dragsted L.O. // Talanta. 2025. V. 282. P. 126985. https://doi.org/10.1016/j.talanta.2024.126985
  7. 7. Blair I.A. // Biomed. Chromatogr. 2010. V. 1. P. 29-38. https://doi.org/10.1002/bmc.1374
  8. 8. Koivisto P., Peltonen K. // Anal. Bioanal. Chem. 2010. V. 398. P. 2563-2572. https://doi.org/10.1007/s00216-010-4217-3
  9. 9. Pearson R.G. // J. Am. Chem. Soc. 1963. V. 85. P. 3533-3539. https://doi.org/10.1021/ja00905a001
  10. 10. LoPachin R.M., Geohagen B.C., Nordstroem L.U. // Toxicology. 2019. V. 418. P. 62-69. https://doi.org/10.1016/j.tox.2019.02.005
  11. 11. Tong G.C., Cornwell W.K., Means G.E. // Toxicol. Lett. 2004. V. 147. P. 127-131. https://doi.org/10.1016/j.toxlet.2003.10.021
  12. 12. Hashimoto K., Aldridge W.N. // Biochem. Pharmacol. 1970. V. 19. P. 2591-2604. https://doi.org/10.1016/0006-2952 (70)90009-2
  13. 13. Springer D.L., Bull R.J., Goheen S.C., Sylvester D.M., Edmonds C.G. // J. Toxicol. Environ. Health. 1993. V. 40. P. 161-176. https://doi.org/10.1080/15287399309531785
  14. 14. Basile A., Ferranti P., Moccaldi R., Spagnoli G., Sannolo N. // J Chromatogr A. 2008. V. 1215. P. 74-81. https://doi.org/10.1016/j.chroma.2008.10.093
  15. 15. Luo Y.S., Long T.Y., Shen L.C., Huang S.L., Chiang S.Y., Wu K.Y. // Chem. Biol. Interact. 2015. V. 237. P. 38-46. https://doi.org/10.1016/j.cbi.2015.05.002
  16. 16. Doerge D.R., Gamboa da Costa G., McDaniel L.P., Churchwell M.I., Twaddle N.C., Beland F.A. // Mutat. Res. 2005. V. 580. P. 131-141. https://doi.org/10.1016/j.mrgentox.2004.10.013
  17. 17. Gan J.C., Oandasan A., Ansari G.A.S. // Chemosphere. 1991. V. 23. P. 939-947. https://doi.org/10.1016/0045-6535 (91)90098-X
  18. 18. Lassé M., Stampfli A.R., Orban T., Bothara R.K., Gerrard J.A., Fairbanks A.J., Pattinson N.R., Dobson R.C.J. // Biochim. Biophys. Acta Gen. Subj. 2021. V. 1865. е130013. https://doi.org/10.1016/j.bbagen.2021.130013
  19. 19. Moghe A., Ghare S., Lamoreau B., Mohammad M., Barve S., McClain C., Joshi-Barve S. // Toxicol. Sci. 2015. V. 143. P. 242-255. https://doi.org/10.1093/toxsci/kfu233
  20. 20. Wang H.T., Zhang S., Hu Y., Tang M.S. // Chem. Res. Toxicol. 2009. V. 22. P. 511-517. https://doi.org/10.1021/tx800369y
  21. 21. LeBlanc A., Shiao T.C., Roy R., Sleno L. // Chem. Res. Toxicol. 2014. V. 27. P. 1632-1639. https://doi.org/10.1021/tx500284g
  22. 22. Hoos J.S., Damsten M.C., de Vlieger J.S., Commandeur J.N., Vermeulen N.P., Niessen W.M., Lingeman H., Irth H. // J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2007. V. 859. P. 147-156. https://doi.org/10.1016/j.jchromb.2007.09.015
  23. 23. Switzar L., Kwast L.M., Lingeman H., Giera M., Pieters R.H., Niessen W.M. // J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2013. V. 917-918. P. 53-61. https://doi.org/10.1016/j.jchromb.2012.12.033
  24. 24. Axworthy D.B., Hoffmann K.J., Streeter A.J., Calleman C.J., Pascoe G.A., Baillie T.A. // Chem. Biol. Interact. 1988. V. 68. P. 99-116. https://doi.org/10.1016/0009-2797 (88)90009-9
  25. 25. Bischoff K. // Veterinary Toxicology (Third Edition) Basic and Clinical Principles / Ed. Gupta R.C. Academic Press, 2018. P. 357-384. https://doi.org/10.1016/B978-0-12-811410-0.00021-0
  26. 26. Ozawa M., Kubo T., Lee S.H., Oe T. // J. Toxicol. Sci. 2019. V. 44. P. 559-563. https://doi.org/10.2131/jts.44.559
  27. 27. Yin H., Guo Y., Zeng T., Zhao X., Xie K. // PLoS One. 2013. V. 8. e76011. https://doi.org/10.1371/journal.pone.0076011
  28. 28. DeCaprio A.P., O’Neill E.A. // Toxicol. Appl. Pharmacol. 1985. V. 78. P. 235-247. https://doi.org/10.1016/0041-008x (85)90287-x
  29. 29. Yan B., DeCaprio A.P., Zhu M., Bank S. // Chem. Biol. Interact. 1996. V. 102. P. 101-116. https://doi.org/10.1016/s0009-2797 (96)03738-6
  30. 30. DeCaprio A.P., Strominger N.L., Weber P. // Toxicol. Appl. Pharmacol. 1983. V. 68. P. 297-307. https://doi.org/10.1016/0041-008x (83)90014-5
  31. 31. Ichihara G., Amarnath V., Valentine H.L., Takeshita T., Morimoto K., Sobue T., Kawai T., Valentine W.M. // Int. Arch. Occup. Environ. Health. 2019. V. 92. P. 873- 881. https://doi.org/10.1007/s00420-019-01430-7
  32. 32. Wang Y., Yu H., Shi X., Luo Z., Lin D., Huang M. // J. Biol. Chem. 2013. V. 288. P. 15980-15987. https://doi.org/10.1074/jbc.M113.467027
  33. 33. Ding A., Ojingwa J.C., McDonagh A.F., Burlingame A.L., Benet L.Z. // Proc. Natl. Acad. Sci. USA. 1993. V. 90. P. 3797-3801. https://doi.org/10.1073/pnas.90.9.3797
  34. 34. Wu Y., Chen L., Chen J., Xue H., He Q., Zhong D., Diao X. // Drug Metab. Dispos. 2023. V. 51. P. 8-16. https://doi.org/10.1124/dmd.122.001019
  35. 35. Scaloni A., Ferranti P., De Simone G., Mamone G., Sannolo N., Malorni A. // FEBS Lett. 1999. V. 452. P. 190-194. https://doi.org/10.1016/S0014-5793 (99)00601-8
  36. 36. Ferraro G., Massai L., Messori L., Merlino A. // Chem. Commun. (Camb). 2015. V. 51. P. 9436-9439. https://doi.org/10.1039/C5CC01751C
  37. 37. Minet E., Cheung F., Errington G., Sterz K., Scherer G. // Biomarkers. 2011. V. 16. P. 89-96. https://doi.org/10.3109/1354750x.2010.533287
  38. 38. Lin C.Y., Lee H.L., Sung F.C., Su T.C. // Environ. Pollut. 2018. V. 239. P. 493-498. https://doi.org/10.1016/j.envpol.2018.04.010
  39. 39. Benz F.W., Nerland D.E., Li J., Corbett D. // Fundam. Appl. Toxicol. 1997. V. 36. P. 149-156. https://doi.org/10.1006/faat.1997.2295
  40. 40. Walker V.E., Fennell T.R., Walker D.M., Bauer M.J., Upton P.B., Douglas G.R., Swenberg J.A. // Chem. Res. Toxicol. V. 2020. V. 33. P. 1609-1622. https://doi.org/10.1021/acs.chemrestox.0c00153
  41. 41. Kaur S., Hollander D., Haas R., Burlingame A.L. // J. Biol. Chеm. 1989. V. 264. P. 16981-16984.
  42. 42. Basile A., Ferranti P., Mamone G., Manco I., Pocsfalvi G., Malorni A., Acampora A., Sannolo N. // Rapid Commun Mass Spectrom. 2002. V. 16. P. 871- 878. https://doi.org/10.1002/rcm.655
  43. 43. Greim H. // Toxicol Lett. 2003. V. 138. P. 1-8. https://doi.org/10.1016/s0378-4274 (02)00408-3
  44. 44. Rappaport S.M., Yeowell-O'Connell K., Bodell W., Yager J.W., Symanski E. // Cancer Res. 1996. V. 56. P. 5410-5416.
  45. 45. Dai J., Zhang F., Zheng J. // Anal. Biochem. 2010. V. 405. P. 73-81. https://doi.org/10.1016/j.ab.2010.05.001
  46. 46. Jаgr M., Mrаz J., Linhart I., Strаnskу V., Pospísil M. // Chem. Res. Toxicol. 2007. V. 20. P. 1442-1452. https://doi.org/10.1021/tx700057t
  47. 47. Koskinen M., Plnа K. // Chem. Biol. Interact. 2000. V. 129. P. 209-229. https://doi.org/10.1016/s0009-2797 (00)00206-4
  48. 48. Yeowell-O'Connell K., Rothman N., Smith M.T., Hayes R.B., Li G., Waidyanatha S., Dosemeci M., Zhang L., Yin S., Titenko-Holland N., Rappaport S.M. // Carcinogenesis. 1998. V. 19. P. 1565-1571. https://doi.org/10.1093/carcin/19.9.1565
  49. 49. Rappaport S.M., Yeowell-O'Connell K., Smith M.T., Dosemeci M., Hayes R.B., Zhang L., Li G., Yin S., Rothman N. // J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2002. V. 778. P. 367-374. https://doi.org/10.1016/s0378-4347 (01)00457-1
  50. 50. Grigoryan H., Edmands W.M.B., Lan Q., Carlsson H., Vermeulen R., Zhang L., Yin S.N., Li G.L., Smith M.T., Rothman N., Rappaport S.M. // Carcinogenesis. 2018. V. 39. P. 661-668. https://doi.org/10.1093/carcin/bgy042
  51. 51. Yeowell-O’Connell K., McDonald T.A., Rappaport S.M. // Anal. Biochem. 1996. V. 237. P. 49-55. https://doi.org/10.1006/abio.1996.0199
  52. 52. Zarth A.T., Murphy S.E., Hecht S.S. // Chem. Biol. Interact. 2015. V. 242. P. 390-395. https://doi.org/10.1016/j.cbi.2015.11.005
  53. 53. Zheng L., Li Y., Wu D., Xiao H., Zheng S., Wang G., Sun Q. // MedComm-Oncology. 2023. V. 2. e56. https://doi.org/10.1002/mog2.56
  54. 54. Carlsson H., Törnqvist M. // Basic Clin. Pharmacol. Toxicol. 2017. V. 121. Suppl. 3. P. 44-54. https://doi.org/10.1111/bcpt.12715
  55. 55. van Vugt-Lussenburg B.M.A., Capinha L., Reinen J., Rooseboom M., Kranendonk M., Onderwater R.C.A., Jennings P. // Chem. Res. Toxicol. 2022. V. 35. P. 1184- 1201. https://doi.org/10.1021/acs.chemrestox.2c00067
  56. 56. Chao M.-R., Chang Y.-J., Cooke M.S., Hu C.-W. // Trends Analyt. Chem. 2024. V. 180. е117900. https://doi.org/10.1016/j.trac.2024.117900
  57. 57. Walmsley S.J., Guo J., Tarifa A., DeCaprio A.P., Cooke M.S., Turesky R.J., Villalta P.W. // Chem. Res. Toxicol. 2024. V. 37. P. 302-310. https://doi.org/10.1021/acs.chemrestox.3c00302
  58. 58. Chen H.J.C. // Chem. Res. Toxicol. 2023. V. 36. P. 132- 140. https://doi.org/10.1021/acs.chemrestox.2c00354
  59. 59. Behl T., Rachamalla M., Najda A., Sehgal A., Singh S., Sharma N., Bhatia S., Al-Harrasi A., Chigurupati S., Vargas-De-La-Cruz C., Hobani Y.H., Mohan S., Goyal A., Katyal T., Solarska E., Bungau S. // Int. J. Mol. Sci. 2021. V. 22. е10141. https://doi.org/10.3390/ijms221810141
  60. 60. Hanwell M.D., Curtis D.E., Lonie D.C., Vandermeersch T., Zurek E., Hutchison G.R. // J. Cheminform. 2012. V. 4. P. 17. https://doi.org/10.1186/1758-2946-4-17
  61. 61. Hein K.L., Kragh-Hansen U., Morth J.P., Jeppesen M.D., Otzen D., Møller J.V., Nissen P. // J. Struct. Biol. V. 2010. V. 171. P. 353-360. https://doi.org/10.1016/j.jsb.2010.03.014
  62. 62. Bucci E., Razynska A., Kwansa H., Gryczynski Z., Collins J.H., Fronticelli C., Unger R., Braxenthaler M., Moult J., Ji X., Gilliland G. // Biochemistry. 1996. V. 35. P. 3418-3425. https://doi.org/10.1021/bi952446b
  63. 63. Sinning I., Kleywegt G.J., Cowan S.W., Reinemer P., Dirr H.W., Huber R., Gilliland G.L., Armstrong R.N., Ji X., Board P.G, Olin B., Mannervik B., Jones T.A. // J. Mol. Biol. 1993. V. 232. P. 192-212. https://doi.org/10.1006/jmbi.1993.1376.
  64. 64. Humphrey W., Dalke A., Schulten K. // J. Mol. Graph. 1996. V. 14. P. 33-38. https://doi.org/10.1016/0263-7855 (96)00018-5
  65. 65. Neese F. // Wiley Interdiscip. Rev. Comput. Mol. Sci. 2022. V. 12. e1606. https://doi.org/10.1002/wcms.1606
  66. 66. Melnikov F., Geohagen B.C., Gavin T., LoPachin R.M., Anastas P.T., Coish P., Herr D.W. // Neurotoxicology. 2020. V. 79. P. 95-103. https://doi.org/10.1016/j.neuro.2020.04.009
  67. 67. Eberhardt J., Santos-Martins D., Tillack A.F., Forli S. // J. Chem. Inf. Model. 2021. V. 61. P. 3891-3898. https://doi.org/10.1021/acs.jcim.1c00203
  68. 68. Belinskaia D.A., Savelieva E.I., Karakashev G.V., Orlova O.I., Leninskii M.A., Khlebnikova N.S., Shestakova N.N., Kiskina A.R. // Int. J. Mol. Sci. 2021. V. 22. e9021. https://doi.org/10.3390/ijms22169021
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library