RAS BiologyБиоорганическая химия Russian Journal of Bioorganic Chemistry

  • ISSN (Print) 0132-3423
  • ISSN (Online) 1998-2860

Regulation of pou5f3 Family Pluripotency Gene Transcripts Stability by Ybx1 Ribonucleoprotein Complexes in Xenopus laevis Early Development

PII
S19982860S0132342325030113-1
DOI
10.7868/S1998286025030113
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 51 / Issue number 3
Pages
486-495
Abstract
Here, we studied the regulation of pou5f3 family transcripts stability by association with Ybxl, a protein of ribonucleoprotein complexes. It is known that the clawed frog Xenopus laevis has three genes belonging to the POU5 family: pou5f3.1/oct91, pou5f3.2/oct25, and pou5f3.3/oct60. The Pou5f3 family factors are orthologues of the mammalian embryonic stem cell OCT4 pluripotency factor. However, the expression patterns of these genes differ over time. Pou5f3.3/oct60 transcripts are stored in oocytes, are present in large quantities in fertilized eggs, and then degrade only after fertilization. Pou5f3.2/oct25 transcripts are also present in the zygote, but their numbers increase even more during the development process. Finally, pou5f3.1/oct91 transcription begins only after the activation of the embryo genome at the middle blastula stage. In the present work, we revealed a much higher specificity of the Ybx1 factor to form a complex with the maternal mRNA of the pou5f3.3/oct60 gene compared to zygotic mRNAs of the pou5f3.1/oct91 and pou5f3.2/oct25 genes. Since Ybx1 is a protein that, on the one hand, is involved in interaction with cytoskeletal proteins, and, on the other hand, binds and stabilizes pluripotency genes mRNA, it can play a linking role in between the degradation of these maternal transcripts and cytoskeletal rearrangements during the onset of morphogenetic cell movements in the process of formation of germ layers.
Keywords
эмбриогенез плюрипотентность дифференцировка транскрипционные факторы POU5 pou5f3.3 Ybx1 мРНК
Date of publication
07.12.2025
Year of publication
2025
Number of purchasers
0
Views
6

References

  1. 1. Onichtchouk D. // Biochimica et Biophysica Acta. 2016. V. 1859. P. 770-779. https://doi.org/10.1016/j.bbagrm.2016.03.013
  2. 2. Gold D.A., Gates R.D., Jacobs D.K. // Mol. Biol. Evol. 2014. V. 31. P. 3136-3147. https://doi.org/10.1093/molbev/msu243
  3. 3. Rosner M.H., Vigano M.A., Ozato K., Timmons P.M., Poirier F., Rigby P.W., Staudt L.M. // Nature. 1990. V. 345. P. 686-692. https://doi.org/10.1038/345686a0
  4. 4. Downs K.M. // Dev Dyn. 2008. V. 237. P. 464-475. https://doi.org/10.1002/dvdy.21438
  5. 5. Morichika K., Sugimoto M., Yasuda K., Kinoshita T. // Zygote. 2014. V. 22. P. 266-274. https://doi.org/10.1017/S0967199412000536
  6. 6. Hinkley C.S., Martin J.F., Leibham D., Perry M. // Mol. Cell. Biol. 1992. V. 12. P.638-649. https://doi.org/10.1128/mcb.12.2.638-649.1992
  7. 7. Cao Y., Knochel S., Donow C., Miethe J., Kaufmann E., Knochel W. // J. Biol. Chem. 2004. V. 279. P. 43735- 43743. https://doi.org/10.1074/jbc.M407544200
  8. 8. Cao Y., Siegel D., Knöchel W. // Mech Dev. 2006. V. 123. P. 614-625. https://doi.org/10.1016/j.mod.2006.06.004
  9. 9. Cao Y., Siegel D., Donow C., Knöchel S., Yuan L., Knöchel W. // EMBO J. 2007. V. 26. P. 2942-2954. https://doi.org/10.1038/sj.emboj.7601736
  10. 10. Parshina E.A., Zaraisky A.G., Martynova N.Yu. // Bioorg. Chem. 2020. V. 46. P. 1-10. https://doi.org/10.2139/ssrn.3554017
  11. 11. Jacobson A., Peltz,S.W. // Ann. Rev. Biochem. 1996. V. 65. P. 693-739. https://doi.org/10.1146/annurev.bi.65.070196.003401
  12. 12. Evdokimova V.M., Ovchinnikov L.P. // Int. J. Biochem. Cell. Biol. 1999. V. 31. P. 139-149. https://doi.org/10.1016/s1357-2725 (98)00137-x
  13. 13. Evdokimova V., Ruzanov P., Imataka H., Raught B., Svitkin Y., Ovchinnikov L.P., Sonenberg N. // EMBO J. 2001. V. 20. P. 5491-5502. https://doi.org/10.1093/emboj/20.19.5491
  14. 14. Bouvet P., Matsumoto K., Wolffe A.P. // J. Biol. Chem. 1995. V. 270. P. 28297-28303. https://doi.org/10.1074/jbc.270.47.28297
  15. 15. Eliseeva I.A., Kim E.R., Guryanov S.G., Ovchinnikov L.P., Lyabin D.N. // Biochemistry (Moscow). 2011. V. 76. P. 1402-1433. https://doi.org/10.1134/S0006297911130049.
  16. 16. Parshina E.A., Eroshkin F.M., Оrlov E.E., Gyoeva F.K., Shokhina A.G., Staroverov D.B., Belousov V.V., Zhigalova N.A., Prokhortchouk E.B., Zaraisky A.G., Martynova N.Y. // Cell. Rep. 2020. V. 33. P. 108396. https://doi.org/10.1016/j.celrep.2020.108396
  17. 17. Martynova N.Y., Parshina E.A., Zaraisky A.G. // STAR Protocols. 2021. V. 2. P. 100552. https://doi.org/10.1016/j.xpro.2021.100552
  18. 18. Livigni А., Peradziryi H., Sharov A.A., Chia G., Hammachi F., Portero Migueles R.P., Sukparangsi W., Pernagallo S., Bradley M., Nichols J., Ko M.S.H., Brickman J.M. // Curr. Biol. 2013. V. 23 P. 2233- 2244. https://doi.org/10.1016/j.cub.2013.09.048
  19. 19. Ruzanov P.V., Evdokimova V.M., Korneeva N.L., Hershey J.W., Ovchinnikov L.P. // J Cell Sci. 1999. V. 112. P. 3487-3496. https://doi.org/10.1242/jcs.112.20.3487
  20. 20. Martynova N.Y., Parshina E.A., Eroshkin F.M., Zaraisky A.G. // Russ. J. Bioorg. Chem. 2020. V. 46. P. 530-536. https://doi.org/10.1134/S1068162020040147
  21. 21. Livak K.J., Schmittgen T.D. // Methods. 2001. V. 25. P. 402-408. https://doi.org/10.1006/meth.2001.1262
  22. 22. Ivanova A.S., Korotkova D.D., Martynova N.Y., Averyanova O.V., Zaraisky A.G., Tereshina M.B. // Russ. J. Bioorg. Chem. 2018. V. 44. P. 358-361. https://doi.org/10.1134/S106816201803007X
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library