- PII
- S19982860S0132342325030081-1
- DOI
- 10.7868/S1998286025030081
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 51 / Issue number 3
- Pages
- 451-460
- Abstract
- A method has been proposed to increase the efficiency of selection of aptamers to cellular receptors by the cell-Selex method, in particular to the receptor tyrosine kinase c-KIT. The use of Tween 20 in buffer solutions in concentrations not exceeding 0.01%, as well as trypsinolysis of surface proteins at the stage of elution of the combinatorial library of oligonucleotides bound to the cell surface, led to an increase in the specificity of aptamers and a decrease in nonspecific sorption according to the results of fluorescence microscopy, thermofluorimetric analysis and high-precision sequencing.
- Keywords
- аптамер cell-SELEX трипсин реакция удлинения праймера c-KIT Tween 20
- Date of publication
- 07.12.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 5
References
- 1. Liu H., Chen X., Focia P., He X. // EMBO J. 2007. V. 26. P. 891-901. https://doi.org/10.1038/sj.emboj.7601545
- 2. Camorani S., Crescenzi E., Fedele M., Cerchia L. // Biochim. Biophys. Acta Rev. Cancer. 2018. V. 1869. P. 263-277. https://doi.org/10.1016/j.bbcan.2018.03.003
- 3. Рулина А.В., Спирин П.В., Прасолов В.С. // Усп. биол. химии. 2010. T. 50. C. 349-386.
- 4. Bibi S., Langenfeld F., Jeanningros S., Brenet F., Soucie E., Hermine O., Damaj G., Dubreuil P., Arock M. // Immunol. Allergy Clin. North Am. 2014. V. 34. P. 239-262. https://doi.org/10.1016/j.iac.2014.01.009
- 5. Kövecsi A., Jung I., Szentirmay Z., Bara T., Bara T., Jr., Popa D., Gurzu S. // Oncotarget. 2017. V. 8. P. 55950- 55957. https://doi.org/10.18632/oncotarget.19116
- 6. Sankhala K.K. // Expert Opin. Investig. Drugs. 2017. V. 26. P. 427-443. https://doi.org/10.1080/13543784.2017.1303045
- 7. Hicke B.J., Marion C., Chang Y.-F., Gould T., Lynott C.K., Parma D., Schmidt P.G., Warren S. // J. Biol. Chem. 2001. V. 276. P. 48644-48654. https://doi.org/10.1074/jbc.m104651200
- 8. Zhang Y., Chen Y., Han D., Ocsoy I., Tan W. // Bioanalysis. 2010. V. 2. P. 907-918. https://doi.org/10.4155/bio.10.46
- 9. Wang C., Zhang M., Yang G., Zhang D., Ding H., Wang H., Fan M, Shen B., Shao N. // J. Biotechnol. 2003.V. 102. P. 15-22. https://doi.org/10.1016/s0168-1656 (02)00360-7
- 10. Cerhia L., Hamm J., Libri D., Tavitian B., Franciscis B. // FEBS Lett. 2002. V. 528. P. 12-16. https://doi.org/10.1016/s0014-5793 (02)03275-1
- 11. Blank M., Weinschenk T., Priemer M., Schluesener H. // J. Biol. Chem. 2001. V. 276. P. 16464-16468. https://doi.org/10.1074/jbc.m100347200
- 12. Daniels D.A., Chen H., Hicke B.J., Swiderek K.M., Gold L. // Proc. Natl. Acad. Sci. USA. 2003. V. 100. P. 15416-15421. https://doi.org/10.1073/pnas.2136683100
- 13. Laos R., Thomson J.M., Benner S.A. // Front. Microbiol. 2014. V. 5. P. 565. https://doi.org/10.3389/fmicb.2014.00565
- 14. Tuerk C., Gold L. // Science. 1990. V. 249. P. 505-510. https://doi.org/10.1126/SCIENCE.2200121
- 15. Ellington A.D., Szostak J.W. // Nature. 1990. V. 346. P. 818-822. https://doi.org/10.1038/346818a0
- 16. Zhu G., Zhang H., Jacobson O., Wang Z., Chen H., Yang X., Niu G., Chen X. // Bioconj. Chem. 2017. V. 28. P. 1068-1075. https://doi.org/10.1021/acs.bioconjchem.6b00746
- 17. Wang D.L., Songc Y.L., Zhu Z., Li X.L., Zou Y., Yang H.T., Wang J.J., Yao P.S., Pan R.J., Yang C.J., Kang D.Z. // Biochem. Biophys. Res. Commun. 2014. V. 453. P. 681-685. https://doi.org/10.1016/j.bbrc.2014.09.023
- 18. Hollenstein M. // Molecules. 2012. V. 17. P. 13569- 13591. https://doi.org/10.3390/molecules171113569
- 19. Gold L., Ayers D., Bertino J, Bock C., Bock A., Brody E.N., Carter J., Dalby A.B., Eaton B.E., Fitzwater T., Flather D., Forbes A., Foreman T., Fowler C., Gawande B., Goss M., Gunn M., Gupta S., Halladay D., Heil J., Heilig J., Hicke B., Husar G., Janjic N., Jarvis T., Jennings S., Katilius E., Keeney T.R., Kim N., Koch T.H., Kraemer S., Kroiss L., Le N., Levine D., Lindsey W., Lollo B., Mayfield W., Mehan M., Mehler R., Nelson S.K., Nelson M., Nieuwlandt D., Nikrad M., Ochsner U., Ostroff R.M., Otis M., Parker T., Pietrasiewicz S., Resnicow D.I., Rohloff J., Sanders G., Sattin S., Schneider D., Singer B., Stanton M., Sterkel A., Stewart A., Stratford S., Vaught J.D., Vrkljan M., Walker J.J., Watrobka M., Waugh S., Weiss A., Wilcox S.K., Wolfson A., Wolk S.K., Zhang C., Zichi D. // PLoS One. 2010. V. 5. P. e15004. https://doi.org/10.1371/journal.pone.0015004
- 20. Sefah K., Shangguan D., Xiong X., O’Donoghue M.B., Tan W. // Nat. Protoc. 2010. V. 5. P. 1169-1185. https://doi.org/10.1038/nprot.2010.66
- 21. Вагапова Э.Р., Лебедев Т.Д., Попенко В.И., Леонова О.Г., Спирин П.В., Прасолов В.С. // Act. Nat. 2020. Т. 12. C. 51-55. https://doi.org/10.32607/actanaturae.10938
- 22. Lebedev T.D., Vagapova E.R., Popenko V.I., Leonova O.G., Spirin P.V., Prassolov V.S. // Front. Oncol. 2019. V. 9. P. 1046. https://doi.org/10.3389/fonc.2019.01046
- 23. Meyer S., Maufort J.P., Nie J., Stewart R., McIntosh B.E., Conti L.R., Ahmad K.M., Soh H.T., Thomson J.A. // PLoS One. 2013. V. 8. P. e71798. https://doi.org/10.1371/journal.pone.0071798
- 24. Chudinov A.V., Shershov V.E., Pavlov A.S., Volkova O.S., Kuznetsova V.E., Zasedatelev A.S., Lapa S.A. // Russ. J. Bioorg. Chem. 2020. V. 46. P. 856-858. https://doi.org/10.1134/S1068162020050064
- 25. Vasiliskov V.A., Lapa S.A., Kuznetsova V.E., Surzhikov S.A., Shershov V.E., Spitsyn M.A., Guseinov T.O., Miftahov R.A., Zasedateleva O.A., Lisitsa A.V., Radko S.P., Zasedatelev A.S., Timofeev E.N., Chudinov A.V. // Russ. J. Bioorg. Chem. 2019. V. 45. P. 221-223. https://doi.org/10.1134/s1068162019030063
- 26. Chudinov A.V., Kiseleva Y.Y., Kuznetsova V.E., Shershov V.E., Spitsyn M.A., Guseinov T.O., Lapa S.A., Timofeev E.N., Archakov A.I., Lisitsa A.V., Radko S.P., Zasedatelevet A.S. // Mol Biol. 2017. V. 51. P. 474-482. https://doi.org/10.1134/S0026893317030025
- 27. Lapa S.A., Pavlov A.S., Kuznetsova V.E., Shershov V.E., Spitsyn M.A., Guseinov T.O., Radko S.P., Zasedatelev A.S., Lisitsa A.V., Chudinov A.V. // Mol. Biol. 2019. V. 53. P. 460-469. https://doi.org/10.1134/S0026893319030099
- 28. Lyu Y., Chen G., Shangguan D., Zhang L., Wan S., Wu Y., Zhang H., Duan L., Liu C., You M., Wang J., Tan W. // Theranostics. 2016. V. 6. P. 1440-1452. https://doi.org/10.7150/thno.15666
- 29. Cerchia L., Duconge F., Pestourie C., Boulay J., Aissouni Y. // PLoS Biol. 2005. V. 3. P. e123. https://doi.org/10.1371/journal.pbio.0030123
- 30. McKeague M., Derosa M.C. // J. Nucleic Acids. 2012. V. 2012. P. 748913. https://doi.org/10.1155/2012/748913
- 31. Ouellet E., Foley J.H., Conway E.M., Haynes C. // Biotechnol. Bioeng. 2015. V. 112. P. 1506-1522. https://doi.org/10.1002/bit.25581
- 32. Kissmann A.K., Bolotnikov G., Li R., Müller F., Xing H., Krämer M., Gottschalk K.E., Andersson J., Weil T., Rosenau F. // Appl. Microbiol. Biotechnol. 2024. V. 108. P. 284. https://doi.org/10.1007/s00253-024-13085-7
- 33. Zhang H.L., Lv C., Li Z.H., Jiang S., Cai D., Liu S.S., Wang T., Zhang K.H. // Front. Chem. 2023. V. 11. P. 1144347. https://doi.org/10.3389/fchem.2023.1144347
- 34. Ouellet E, Lagally E.T., Cheung K.C., Haynes C.A. // Biotechnology. 2014. V. 111. P. 2265-2279. https://doi.org/10.1002/bit.25294
- 35. Schutze T., Arndt P., Menger M., Wochner A., Vingron M., Erdmann V., Lehrach H., Kaps Ch., Glokler J. // Nucleic Acids Res. 2009. V. 38. P. e23. https://doi.org/10.1371/journal.pone.0029604
- 36. Pearson K., Doherty C., Zhang D., Becker N.A., Maher L.J. // Anal. Biochem. 2022. V. 650. P. 114712. https://doi.org/10.1016/j.ab.2022.114712
- 37. Raber H.F., Kubiczek D.H., Bodenberger N., Kissmann A.K., D’souza D., Xing H., Mayer D., Xu P., Knippschild U., Spellerberg B., Weil T., Rosenau F. // Int. J. Mol. Sci. 2021. V. 22. P. 10425. https://doi.org/10.3390/ijms221910425
- 38. Catuogno S., Esposito C.L. // Biomedicines. 2017. V. 5. P. 49. https://doi.org/10.3390/biomedicines5030049
- 39. Flanagan Sh.P., Fogel R., Edkins A.L., Ho L., Limson J. // Anal. Methods. 2021. V. 13. P. 1191-1203. https://doi.org/10.1039/d0ay01878c
- 40. Shangguan D., Meng L., Cao Z.C., Xiao Z., Fang X., Li Y., Cardona D., Witek R.P., Liu C., Tan W. // Anal. Chem. 2008. V. 80. P. 721-728. https://doi.org/10.1021/ac701962v
- 41. Cherney L.T., Obrecht N.M., Krylov S.N. // Anal. Chem. 2013. V. 85. P. 4157-4164. https://doi.org/10.1021/ac400385v
- 42. Mayer G., Ahmed M.S., Dolf A. // Nat. Protoc. 2010. V. 5. P. 1993-2004. https://doi.org/10.1038/nprot.2010.163
- 43. Xiong L., Xia M., Wang Q., Meng Z., Zhang J., Yu G., Dong Z., Lu Y., Sun Y. // Biotechnol. Lett. 2022. V. 44. P. 777-786. https://doi.org/10.1007/s10529-022-03252-z
- 44. Hua T., Zhang X., Tang B., Chang Ch., Liu G., Feng L., Yu Y., Zhang D., Hou J. // BMC Vet. Res. 2018. V. 14. P. 138. https://doi.org/10.1186/s12917-018-1457-5
- 45. Zhang Y., Wu Y., Zheng H., Xi H., Ye T., Chan C.Y., Kwok C.K. // Anal. Chem. 2021. V. 93. P. 5744-5753. https://doi.org/10.1021/acs.analchem.0c04862
- 46. Замай А.С., Замай Г.С., Коловская О.С., Замай Т.Н., Березовский М.В. // Патент RU2518368С1, 2012.
- 47. Zhang K., Sefah K., Tang L., Zhao Z., Zhu G., Ye M., Sun W., Goodison S., Tan W. // ChemMedChem. 2012. V. 7. P. 79-84. https://doi.org/10.1002/cmdc.201100457
- 48. Gu L., Yan W., Liu S., Ren W., Lyu M., Wang S. // Anal. Biochem. 2018. V. 561-562. P. 89-95. https://doi.org/10.1016/j.ab.2018.09.004