- PII
- S19982860S0132342325030078-1
- DOI
- 10.7868/S1998286025030078
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 51 / Issue number 3
- Pages
- 444-450
- Abstract
- The regulation of substrate surface properties in biochip technology opens the possibility of optimizing platforms for efficient biomolecule recognition. The research is aimed at exploring the use of brush polymers to improve the sensitivity and speed of DNA analysis on biochips. Brush polymer cells for biochips were prepared by UV-initiated polymerization of monomers from the surface on polyethylene terephthalate substrates. Cross-linked hydrogel polymer cells for biochips were prepared on polybutylene terephthalate substrates by copolymerization of gel components with DNA probes. The probes in brush polymer cells were immobilized through activated carboxyl groups. A single-stranded DNA target with a length of 124 nucleotides corresponding to the 7th exon of the human ABO gene was used for hybridization analysis. Hybridization of the DNA target was studied on biochips with cells made of brush polymers and crosslinked polyacrylamide hydrogels. The results of hybridization analysis on biochips were evaluated by digital fluorescence microscopy. Higher intensity of fluorescence signals and higher ratio of signals of cells with perfect duplexes to those of cells with imperfect duplexes were observed in cells from brush polymers compared to cells from 3D cross-linked polymers. Achievement of hybridization signal up to 90% of saturation occurred in the same time in both cell types. The relevance of this work stems from the need for highly accurate and efficient diagnostic methods to analyze biomolecules with minimal time and reagent consumption. The development of biochips based on brush polymers will increase the accuracy and sensitivity of molecular studies, which is especially important for early diagnosis of diseases.
- Keywords
- биочипы гибридизационный анализ ДНК гидрогелевые ячейки ячейки из щеточных полимеров
- Date of publication
- 07.12.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 5
References
- 1. Donatin E., Drancourt M. // Méd. Maladies Infect. 2012. V. 42. P. 453-459. https://doi.org/10.1016/j.medmal.2012.07.017
- 2. Иконникова А.Ю., Яценко Ю.Е., Кременецкая О.С., Виноградова О.Ю., Фесенко Д.О., Абрамов И.С., Овсепян В.А., Наседкина Т.В. // Мол. биология. 2016. Т. 50. С. 474-479. https://doi.org/10.7868/S0026898416020087
- 3. Baum M., Bielau S., Rittner N., Schmid K., Eggelbusch K., Dahms M., Schlauersbach A., Tahedl H., Beier M., Guimil R., Scheffer M., Hermann C., Funk J.-M., Wixmerten A., Rebscher H., Honig M., Andreae C., Buchner D., Moschel E., Glathe A., Jager E., Thom M., Greil A., Bestvater F., Obermeier F., Burgmaier J., Thome K., Weichert S., Hein S., Binnewies T., Foitzik V., Muller M., Stahler C.F., Stahler P.F. // Nucleic Acids Res. 2003. V. 31. P. e151. https://doi.org/10.1093/nar/gng151
- 4. Ravan H., Kashanian S., Sanadgol N., BadoeiDalfard A., Karami Z. // Anal. Biochem. 2014. V. 444. P. 41-46. https://doi.org/10.1016/j.ab.2013.09.032
- 5. Traeger J.C., Lamberty Z., Schwartz D.K. // ACS Nano. 2019. V. 13. P. 7850-7859. https://doi.org/10.1021/acsnano.9b02157
- 6. Sethi D., Gandhi R.P., Kumar P., Gupta K.C. // Biotechnol. J. 2009. V. 4. P. 1513-1529. https://doi.org/10.1002/biot.200900162
- 7. Miftakhov R.A., Lapa S.A., Kuznetsova V.E., Zolotov A.M., Vasiliskov V.A., Shershov V.E., Surzhikov S.A., Zasedatelev A.S., Chudinov A.V. // Russ. J. Bioorg. Chem. 2021. V. 47. P. 1345-1347. https://doi.org/10.1134/S1068162021060182
- 8. Wu Y., Lai R.Y. // Anal. Chem. 2014. V. 86. P. 8888- 8895. https://doi.org/10.1021/ac5027226
- 9. Guschin D., Yershov G., Zaslavsky A., Gemmell A., Shick V., Proudnikov D., Arenkov P., Mirzabekov A. // Anal. Biochem. 1997. V. 250. P. 203-211. https://doi.org/10.1006/abio.1997.2209
- 10. Rubina A.Yu., Pan’kov S.V., Dementieva E.I., Pen’kov D.N., Butygin A.V., Vasiliskov V.A., Chudinov A.V., Mikheikin A.L., Mikhailovich V.M., Mirzabekov A.D. // Anal. Biochem. 2004. V. 325. P. 92-106. https://doi.org/10.1016/j.ab.2003.10.010
- 11. Sandrin D., Wagner D., Sitta C.E., Thoma R., Felekyan S., Hermes H.E., Janiak C., de Sousa Amadeu N., Kühnemuth R., Löwen H., Egelhaaf S.U., Seidel C.A.M. // Phys. Chem. Chem. Phys. 2016. V. 18. P. 12860-12876. https://doi.org/10.1039/C5CP07781H
- 12. Olivier A., Meyer F., Raquez J.-M., Damman P., Dubois P. // Progr. Polym. Sci. 2012. V. 37. P. 157-181. https://doi.org/10.1016/j.progpolymsci.2011.06.002
- 13. Demirci S., Caykara T. // Mater. Sci. Eng. C. Mater. Biol. Appl. 2013. V. 33. P. 111-120. https://doi.org/10.1016/j.msec.2012.08.015
- 14. Shtylev G.F., Shishkin I.Yu., Shershov V.E., Kuznetsova V.E., Kachulyak D.A., Butvilovskaya V.I., Levashova A.I., Vasiliskov V.A., Zasedateleva O.A., Chudinov A.V. // Russ. J. Bioorg. Chem. 2024. V. 50. P. 2036-2049. https://doi.org/10.1134/S1068162024050339
- 15. Cimen D., Caykara T. // Polym. Chem. 2015. V. 6. P. 6812-6818. https://doi.org/10.1039/C5PY00923E
- 16. Miftakhov R.A., Ikonnikova A.Yu., Vasiliskov V.A., Lapa S.A., Levashova A.I., Kuznetsova V.E., Shershov V.E., Zasedatelev A.S., Nasedkina T.V., Chudinov A.V. // Russ. J. Bioorg. Chem. 2023. V. 49. P. 1143-1150. https://doi.org/10.1134/S1068162023050217
- 17. Wang C., Yan Q., Liu H.-B., Zhou X.-H., Xiao S.-J. // Langmuir. 2011. V. 27. P. 12058-12068. https://doi.org/10.1021/la202267p
- 18. Lapa S.A., Klochikhina E.S., Miftakhov R.A., Zasedatelev A.S, Chudinov A.V. // Russ. J. Bioorg. Chem. 2021. V. 47. P. 1122-1125. https://doi.org/10.1134/S1068162021050290
- 19. Wei Q., Liu S., Huang J., Mao X., Chu X., Wang Y., Qiu M. Y., Mao Y., Xie Y., Li Y. // J. Biochem. Mol. Biol. 2004. V. 37. P. 439-444. https://doi.org/10.5483/BMBRep.2004.37.4.439