RAS BiologyБиоорганическая химия Russian Journal of Bioorganic Chemistry

  • ISSN (Print) 0132-3423
  • ISSN (Online) 1998-2860

Mass Spectrometric Analysis of Xenopus laevis Cytoskeletal Protein Zyxin Post-Translational Modifications

PII
S19982860S0132342325030027-1
DOI
10.7868/S1998286025030027
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 51 / Issue number 3
Pages
388-397
Abstract
In addition to its involvement in fundamental cellular processes, zyxin, a LIM-domain protein in the cytoskeletal system, is actively studied because it plays an important role in mechanosensory functions, actin polymerization regulation at cell junctions, as well as gene expression regulation. The disruption of zyxin expression and processing has been associated with carcinogenesis and cardiovascular disease. Zyxin plays an important role in the invasion and metastasis of tumors. The post-translational modification of zyxin in mammals regulates its activity and subcellular location. Given that zyxin is an evolutionarily highly conserved protein, we conducted a search for post-translational modifications of the zyxin homolog from Xenopus laevis using chromatographic mass spectrometry. To identify modified peptides, an enrichment method was employed using co-immunoprecipitation of endogenous zyxin from gastrula-stage embryonic cell lysates. As a result, previously unknown modifications of this protein were discovered, specifically A-terminal acetylation at methionine position 1 and phosphorylation at Ser197 and Ser386. To identify zyxin isoforms with different electrophoretic mobilities, separation was performed using polyacrylamide gel electrophoresis. Zyxin was found in bands with electrophoretic mobilities of 70 and 105 kDa. Thus, this study presents entirely new data on the post-translational modifications of zyxin from X. laevis. Since defects in mechanical signal transduction are associated with developmental disorders, oncogenesis, and metastasis, the study of mechanosensitive protein zyxin modifications and processing on the model organism X. laevis opens up opportunities for diagnostic studies at the molecular level, which can be used in the future to determine drugs use prospective in pharmacology.
Keywords
эмбриогенез изоформы белка развитие внутриклеточная локализация зиксин модификации протеолиз
Date of publication
07.12.2025
Year of publication
2025
Number of purchasers
0
Views
7

References

  1. 1. Beckerle M.C. // Bioessays. 1997. V. 19. V. 949-957. https://doi.org/10.1002/bies.950191104
  2. 2. Hirata H., Tatsumi H., Sokabe M. // Commun. Integr. Biol. 2008. V. 1. P. 192-195. https://doi.org/10.4161/cib.1.2.7001
  3. 3. Hirata H., Tatsumi H., Sokabe M. // J. Cell Sci. 2008. V. 121. P. 2795-2804. https://doi.org/10.1242/jcs.030320
  4. 4. Nix D.A., Beckerle M.C. // J. Cell Biol. 1997. V. 138. P. 1139-1147. https://doi.org/10.1083/jcb.138.5.1139
  5. 5. Moody J.D., Grange J., Ascione M.P., Boothe D., Bushnell E., Hansen M.D. // Biochem. Biophys. Res. Commun. 2009. V. 378. P. 625-628. https://doi.org/10.1016/j.bbrc.2008.11.100
  6. 6. Zhou J., Zeng Y., Cui L., Chen X., Stauffer S., Wang Z., Yu F., Lele S.M., Talmon G.A., Black A.R., Chen Y., Dong J. // Proc. Natl. Acad. Sci. USA. 2018. V. 115. P. E6760-E6769. https://doi.org/10.1073/pnas.1800621115
  7. 7. Zhao Y., Yue S., Zhou X., Guo J., Ma S., Chen Q. // J. Biol. Chem. 2022. V. 298. P. 101776. https://doi.org/10.1016/j.jbc.2022.101776
  8. 8. Siddiqui M.Q., Badmalia M.D., Patel T.R. // Int. J. Mol. Sci. 2021. V. .22. P. 2647. https://doi.org/10.3390/ijms22052647
  9. 9. Nix D.A., Fradelizi J., Bockholt S., Menichi B., Louvard D., Friederich E., Beckerle M.C. // J. Biol. Chem. 2001. V. 276. P. 34759-34767. https://doi.org/10.1074/jbc.M102820200
  10. 10. Uemura A., Nguyen T.N., Steele A.N., Yamada S. // Biophys. J. 2011. V. 101. P. 1069-1075. https://doi.org/10.1016/j.bpj.2011.08.001
  11. 11. Drees B.E., Andrews K.M., Beckerle M.C. // J. Cell Biol. 1999. V. 147. P. 1549-1560. https://doi.org/10.1083/jcb.147.7.1549
  12. 12. Li B., Trueb B. // J. Biol. Chem. 2001. V. 276. P. 33328- 33335. https://doi.org/10.1074/jbc.M100789200
  13. 13. Drees B., Friederich E., Fradelizi J., Louvard D., Beckerle M.C., Golsteyn R.M. // J. Biol. Chem. 2000. V. 275. P. 22503-22511. https://doi.org/10.1074/jbc.M001698200
  14. 14. Golsteyn R.M., Beckerle M.C., Koay T., Friederich E. // J. Cell. Sci. 1997. V. 110. P. 1893-1906. https://doi.org/10.1242/jcs.110.16.1893
  15. 15. Smith M.A., Hoffman L.M., Beckerle M.C. // Cell Biol. 2014. V. 24. P. 575-583. https://doi.org/10.1016/j.tcb.2014.04.009
  16. 16. Martynova N.Y., Parshina E.A., Ermolina L.V., Zaraisky A.G. // Biochem. Biophys. Res. Commun. 2018. V. 504. P. 251-256. https://doi.org/10.1016/j.bbrc.2018.08.164
  17. 17. Martynova N.Y., Ermolina L.V., Ermakova G.V., Eroshkin F.M., Gyoeva F.K., Baturina N.S., Zaraisky A.G. // Dev. Biol. 2013. V. 380. P. 37-48. https://doi.org/10.1016/j.ydbio.2013.05.005
  18. 18. Li N., Goodwin R.L., Potts J.D. // Microsc. Microanal. 2013. V. 19. P. 842-854. https://doi.org/10.1017/S1431927613001633
  19. 19. Hoffman L.M., Nix D.A., Benson B., Boot-Hanford R., Gustafsson E., Jamora C., Menzies A.S., Goh K.L., Jensen C.C., Gertler F.B., Fuchs E., Fässler R., Beckerle M.C. // Mol. Cell Biol. 2003. V. 23. P. 70-79. https://doi.org/10.1128/MCB.23.1.70-79.2003
  20. 20. Rauskolb C., Pan G., Reddy B.V., Oh H., Irvine K.D. // PLoS Biol. 2011. V. 9. P. e1000624. https://doi.org/10.1371/journal.pbio.1000624
  21. 21. Gaspar P., Holder M.V., Aerne B.L., Janody F., Tapon N. // Curr. Biol. 2015. V. 25. P. 679-689. https://doi.org/10.1016/j.cub.2015.01.010
  22. 22. Martynova N.Y., Eroshkin F.M., Ermolina L.V., Ermakova G.V., Korotaeva A.L, Smurova K.M., Gyoeva F.K., Zaraisky A.G. // Dev. Dyn. 2008. V. 237. P. 736-749. https://doi.org/10.1002/dvdy.21471
  23. 23. Martynova N.U., Ermolina L.V., Eroshkin F.M., Zarayskiy A.G. // Bioorg. Khim. 2015. V. 41. P. 744- 748. https://doi.org/10.1134/s1068162015060102
  24. 24. Parshina E.A., Eroshkin F.M., Оrlov E.E., Gyoeva F.K., Shokhina A.G., Staroverov D.B., Belousov V.V., Zhigalova N.A., Prokhortchouk E.B., Zaraisky A.G., Martynova N.Y. // Cell Rep. 2020. V. 33. P. 108396. https://doi.org/10.1016/j.celrep.2020.108396
  25. 25. Ivanova E.D., Parshina E.A., Zaraisky A.G. Martynova N.Y. // Russ. J. Bioorg. Chem. 2024. V. 50. P. 723-732. https://doi.org/10.1134/S1068162024030026
  26. 26. Aebersold R., Mann M. // Nature. 2003. V. 422. P. 198- 207. https://doi.org/10.1038/nature01511
  27. 27. Mann M., Wilm M. // Anal. Chem. 1994. V. 66. P. 4390- 4399. https://doi.org/10.1021/ac00096a002
  28. 28. Eng J.K., Searle B.C., Clauser K.R., Tabb D.L. // Mol. Cell Proteomics. 2011. V. 10. P. R111.009522. https://doi.org/10.1074/mcp.R111.009522
  29. 29. Mann M., Ong S.E., Grønborg M., Steen H., Jensen O.N., Pandey A. // Trends Biotechnol. 2002. V. 20. P. 261-268. https://doi.org/10.1016/s0167-7799 (02)01944-3
  30. 30. Groen A., Thomas L., Lilley K., Marondedze C. // Methods Mol. Biol. 2013. V. 1016. P. 121-137. https://doi.org/10.1007/978-1-62703-441-8_9
  31. 31. Maynard J.C., Chalkley R.J. // Mol. Cell Proteomics. 2021. V. 20. P. 100031. https://doi.org/10.1074/mcp.R120.002206
  32. 32. Shevchenko A., Tomas H., Havlis J., Olsen J.V., Mann M. // Nat. Protoc. 2006. V. 1. P. 2856-2860. https://doi.org/10.1038/nprot.2006.468
  33. 33. Ma B., Zhang K., Hendrie C., Liang C., Li M., DohertyKirby A., Lajoie G. // Rapid Commun. Mass Spectrom. 2003. V. 17. P. 2337-2342. https://doi.org/10.1002/rcm.1196
  34. 34. Rappsilber J., Mann M., Ishihama Y. // Nat. Protoc. 2007. V. 2. P. 1896-1906. https://doi.org/10.1038/nprot.2007.261
  35. 35. Nguyen K.T., Mun S.H., Lee C.S., Hwang C.S. // Exp. Mol. Med. 2018. V. 50. P. 1-8. https://doi.org/10.1038/s12276-018-0097-y
  36. 36. Arnaudo N., Fernández I.S., McLaughlin S.H., PeakChew S.Y., Rhodes D., Martino F. // Nat. Struct. Mol. Biol. 2013. V. 20. P. 1119-1121. https://doi.org/10.1038/nsmb.2641
  37. 37. Fujita Y., Yamaguchi A., Hata K., Endo M., Yamaguchi N., Yamashita T. // BMC Cell Biol. 2009. V. 27. P. 10- 16. https://doi.org/10.1186/1471-2121-10-6
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library