RAS BiologyБиоорганическая химия Russian Journal of Bioorganic Chemistry

  • ISSN (Print) 0132-3423
  • ISSN (Online) 1998-2860

The Role of Phospholipid Derivatives of Cyclodextrins in the Formation of Stable Lipid Nanoparticles for Drug Delivery

PII
S19982860S0132342325030013-1
DOI
10.7868/S1998286025030013
Publication type
Review
Status
Published
Authors
Volume/ Edition
Volume 51 / Issue number 3
Pages
375-387
Abstract
This review article deals with physical methods for investigating the structural characteristics of inclusion complexes of supramers of phospholipid derivatives of cyclodextrins. Phospholipid derivatives of cyclodextrins are formed by attaching a phospholipid moiety to the cyclodextrin molecule. This modification imparts additional structural features to the cyclodextrin, increasing its solubility and stability in aqueous media. These new compounds can self-assemble in aqueous media into different types of supramolecular nanocomplexes. Biomedical applications are envisaged for nanoencapsulation of drug molecules in hydrophobic interchain volumes and nanocavities of amphiphilic cyclodextrins (serving as drug carriers or pharmaceutical excipients), antitumour phototherapy, gene delivery, and protection of unstable active ingredients by complexation of inclusions in nanostructured media. The focus is on the study of nanoparticle morphology, as efficient delivery systems must fulfil certain requirements. Classical physical methods cannot provide detailed information on the properties of potential structures for biomedical applications. For this purpose, the search for new non-invasive approaches is necessary.
Keywords
циклодекстрин функциональные спейсерные липиды адресная доставка лекарств молекулярная динамика малоугловое рентгеновское рассеяние
Date of publication
07.12.2025
Year of publication
2025
Number of purchasers
0
Views
8

References

  1. 1. Spencer D.S., Puranik A.S., Peppas N.A. // Curr. Opin. Chem. Eng. 2015. V. 7. P. 84-92. https://doi.org/10.1016/j.coche.2014.12.003
  2. 2. Hassan S., Prakash G., Ozturk A., Saghazadeh S., Sohail M.F., Seo J., Dokmeci M., Zhang Y.S., Khademhosseini A. // Nano Today. 2017. V. 15. P. 91-106. https://doi.org/10.1016/j.nantod.2017.06.008
  3. 3. Singh R., Lillard J.W. // Exp. Mol. Pathol. 2009. V. 86. P. 215-223. https://doi.org/10.1016/j.yexmp.2008.12.004
  4. 4. Hu C.M.J., Fang R.H., Luk B.T., Zhang L. // Nanoscale. 2014. V. 6. P. 65-75. https://doi.org/10.1039/C3NR05444F
  5. 5. Lakkakula J.R., Krause R.W.M. // Nanomedicine. 2014. V. 9. P. 877-894. https://doi.org/10.2217/nnm.14.41
  6. 6. Crini G. // Chem. Rev. 2014. V. 114. P. 10940-10975. https://doi.org/10.1021/cr500081p
  7. 7. Biwer A., Antranikian G., Heinzle E. // Appl. Microbiol. Biotechnol. 2002. V. 59. P. 609-617. https://doi.org/10.1007/s00253-002-1057-x
  8. 8. Bonnet V., Gervaise C., Djedaïni-Pilard F., Furlan A., Sarazin C. // Drug Discov. Today. 2015. V. 20. P. 1120- 1126. https://doi.org/10.1016/j.drudis.2015.05.008
  9. 9. Mazzaglia A., Bondì M.L., Scala A., Zito F., Barbieri G., Crea F., Vianelli G., Mineo P., Fiore T., Pellerito C., Pellerito L., Costa M.A. // Biomacromolecules. 2013. V. 14. P. 3820-3829. https://doi.org/10.1021/bm400849n
  10. 10. Aranda C., Urbiola K., Méndez Ardoy A., García Fernández J.M., Ortiz Mellet C., de Ilarduya C.T. // Eur. J. Pharm. Biopharm. 2013. V. 85. P. 390-397. https://doi.org/10.1016/j.ejpb.2013.06.011
  11. 11. Roux M., Sternin E., Bonnet V., Fajolles C., Djedaïni-Pilard F. // Langmuir. 2013. V. 29. P. 3677-3687. https://doi.org/10.1021/la304524a
  12. 12. Niikura K., Matsunaga T., Suzuki T., Kobayashi S., Yamaguchi H., Orba Y., Kawaguchi A., Hasegawa H., Kajino K., Ninomiya T., Ijiro K., Sawa H. // ACS Nano. 2013. V. 7. P. 3926-3938. https://doi.org/10.1021/nn3057005
  13. 13. Docter D., Westmeier D., Markiewicz M., Stolte S., Knauer S.K., Stauber R.H. // Chem. Soc. Rev. 2015. V. 44. P. 6094-6121. https://doi.org/10.1039/c5cs00217f
  14. 14. Gervaise C., Bonnet V., Wattraint O., Aubry F., Sarazin C., Jaffrès P.A., Djedaïni-Pilard F. // Biochimie. 2015. V. 94. P. 66-74. https://doi.org/10.1016/j.biochi.2011.09.005
  15. 15. Zerkoune L., Angelova A., Lesieur S. // Nanomaterials (Basel). 2014. V. 4. P. 741-765. https://doi.org/10.3390/nano4030741
  16. 16. Auzély-Velty R., Djedaïni-Pilard F., Désert S., Perly B., Zemb T.H. // Langmur. 2000. V. 16. P. 3727-3734. https://doi.org/10.1021/la991361z
  17. 17. Nozaki T., Maeda Y., Ito K., Kitano H. // Macromolecules. 1995. V. 28. P. 522-524. https://doi.org/10.1021/ma00106a016
  18. 18. Kauscher U., Stuart M.C.A., Druc ker P., Galla H.-J., Ravoo B.J. // Langmuir. 2013. V. 29. P. 7377-7383. https://doi.org/10.1021/la3045434
  19. 19. Erdogar N., Esendaglı G., Nielsen T.T., Şen M., Öner L., Bilensoy E. // Int. J. Pharm. 2016. V. 509. P. 375-390. https://doi.org/10.1016/j.ijpharm.2016.05.040
  20. 20. Shao S., Si J., Tang J., Sui M., Shen Y. // Macromolecules. 2014. V. 47. P. 916-921. https://doi.org/10.1021/ma4025619
  21. 21. Moutard S., Perly B., Godé P., Demailly G., Djedaïni-Pilard F. // J. Incl. Phenom. 2002. V. 44. P. 317 -322.
  22. 22. Geze A., Choisnard L., Putaux J.L., Wouessidjewe D. // Mater. Sci. Eng. 2009. V. 29. P. 458-462. https://doi.org/10.1016/j.msec.2008.08.027
  23. 23. Pedersen N.R., Kristensen J.B., Bauw G., Ravoo B.J., Darcy R., Larsena K.L., Pedersen L.H. // Tetrahedron Asymmetry. 2005. V. 16. P. 615-622. https://doi.org/10.1016/j.tetasy.2004.12.009
  24. 24. Yaméogo J.B., Geze A., Choisnard L., Putaux J.L., Gansané A., Sirima S.B., Semdé R., Wouessidjewe D. // Eur. J. Pharm. Biopharm. 2012. V. 80. P. 508-517. https://doi.org/10.1016/j.ejpb.2011.12.007
  25. 25. Essa S., Rabanel J.M., Hildgen P. // Int. J. Pharm. 2010. V. 388. P. 263-273. https://doi.org/10.1016/j.ijpharm.2009.12.059
  26. 26. Bhattacharjee S. // J. Control. Release. 2016. V. 235. P. 337-351. https://doi.org/10.1016/j.jconrel.2016.06.017
  27. 27. Lesieur S., Charon D., Lesieur P., Ringard-Lefebvre C., Muguet V., Duchêne D., Wouessidjewe D. // Chem. Phys. Lipids. 2000. V. 106. P. 127-144. https://doi.org/10.1016/S0009-3084 (00)00149-3
  28. 28. Kasselouri A., Coleman A.W., Baszkin A. // J. Colloid Interface Sci. 1996. V. 180. P. 384-397. https://doi.org/10.1006/jcis.1996.0317
  29. 29. LoPresti C., Massignani M., Fernyhough C., Blanazs A., Ryan A.J., Madsen J., Warren N.J., Armes S.P., Lewis A.L., Chirasatitsin S., Engler A.J., Battaglia G. // ACS Nano. 2011. V. 5. P. 1775-1784. https://doi.org/10.1021/nn102455z
  30. 30. Putaux J.L., Lancelon-Pin C., Legrand F.X., Pastrello M., Choisnard L., Gèze A., Rochas C., Wouessidjewe D. // Langmuir. 2017. V. 33. P. 7917-7928. https://doi.org/10.1021/acs.langmuir.7b01136
  31. 31. Oliva E., Mathiron D., Rigaud S., Monflier E., Sevin E., Bricout H., Tilloy S., Gosselet F., Fenart L., Bonnet V., Pilard S., Diedaini-Pilard F. // Biomolecules. 2020. V. 10. P. 339. https://doi.org/10.3390/biom10020339
  32. 32. Feigin L.A., Svergun D.I. // Structure Analysis by Small-Angle X-Ray and Neutron Scattering. New York: Plenum Press, 1987. V. 1. P. 14-15. https://link.springer.com/book/10.1007/978-1-47576624-0
  33. 33. Auzély-Velty R., Perly B., Taché O., Zemb T., Jéhan P., Guenot P., Dalbiez J.-P., Djedaıni-Pilard F. // Carbohydr. Res. 1999. V. 318. P. 82-90. https://doi.org/10.1016/S0008-6215 (99)00086-5
  34. 34. Roling O., Wendeln C., Kauscher U., Seelheim P., Galla H.-J., Ravoo B.J. // Langmuir. 2013. V. 29. P. 10174-10182. https://doi.org/10.1021/la4011218
  35. 35. Choisnard L., Gèze A., Putaux J.L., Wong Y.S., Wouessidjewe D. // Biomacromolecules. 2006. V. 7. P. 515- 520. https://doi.org/10.1021/bm0507655
  36. 36. Godinho B.M.D.C., Ogier J.R., Darcy R., O’Driscoll C.M., Cryan J.F. // Mol. Pharm. 2013. V. 10. P. 640-649. https://doi.org/10.1021/mp3003946
  37. 37. Chen P., Hub J.S. // Biophys. J. 2015. V. 108. P. 2573- 2584. https://doi.org/10.1016/j.bpj.2015.03.062
  38. 38. Vaskan I.S., Prikhodko A.T., Petoukhov M.V., Shtykova E.V., Bovin N.V., Tuzikov A.B., Oleinikov V.A., Zalygin A.V. // Colloids and Surfaces B: Biointerfaces. 2023. V. 224. P. 113183. https://doi.org/10.1016/j.colsurfb.2023.113183
  39. 39. Zalygin A., Solovyeva D., Vaskan I., Henry S., Schaefer M., Volynsky P., Tuzikov A., Korchagina E., Ryzhov I., Nizovtsev A., Mochalov K., Efremov R., Shtykova E., Oleinikov V., Bovin N. // ChemistryOpen. 2020. V. 9. P. 641-648. https://doi.org/10.1002/open.201900276
  40. 40. Zhou X., Liang J.F. // J. Photochem. Photobiol. A Chemistry. 2017. V. 349. P. 124-128. https://doi.org/10.1016/j.jphotochem.2017.09.032
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library