- Код статьи
- S19982860S0132342325030013-1
- DOI
- 10.7868/S1998286025030013
- Тип публикации
- Обзор
- Статус публикации
- Опубликовано
- Авторы
- Том/ Выпуск
- Том 51 / Номер выпуска 3
- Страницы
- 375-387
- Аннотация
- Рассмотрены физические методы исследования структурных характеристик комплексов включения супрамеров фосфолипидных производных циклодекстринов. Эта модификация придает циклодекстрину дополнительные структурные особенности, повышая его растворимость и стабильность в водных средах. Подобные новые соединения могут самособираться в водной среде в различные типы супрамолекулярных нанокомплексов. Биомедицинские применения предусмотрены для наноинкапсулирования молекул лекарственных средств в гидрофобных межцепочечных объемах и нанополостях амфифильных циклодекстринов (служащих в качестве носителей лекарственных средств или фармацевтических вспомогательных веществ), противоопухолевой фототерапии, доставки генов, а также для защиты нестабильных активных ингредиентов путем комплексообразования включений в наноструктурированных средах. Основное внимание уделяется изучению морфологии наночастиц, т.к. эффективные системы доставки должны соответствовать определенным требованиям. Классические физические методы не могут дать подробной информации о свойствах потенциальных структур для применения в биомедицине. Для этого необходим поиск новых неинвазивных подходов.
- Ключевые слова
- циклодекстрин функциональные спейсерные липиды адресная доставка лекарств молекулярная динамика малоугловое рентгеновское рассеяние
- Дата публикации
- 07.12.2025
- Год выхода
- 2025
- Всего подписок
- 0
- Всего просмотров
- 6
Библиография
- 1. Spencer D.S., Puranik A.S., Peppas N.A. // Curr. Opin. Chem. Eng. 2015. V. 7. P. 84-92. https://doi.org/10.1016/j.coche.2014.12.003
- 2. Hassan S., Prakash G., Ozturk A., Saghazadeh S., Sohail M.F., Seo J., Dokmeci M., Zhang Y.S., Khademhosseini A. // Nano Today. 2017. V. 15. P. 91-106. https://doi.org/10.1016/j.nantod.2017.06.008
- 3. Singh R., Lillard J.W. // Exp. Mol. Pathol. 2009. V. 86. P. 215-223. https://doi.org/10.1016/j.yexmp.2008.12.004
- 4. Hu C.M.J., Fang R.H., Luk B.T., Zhang L. // Nanoscale. 2014. V. 6. P. 65-75. https://doi.org/10.1039/C3NR05444F
- 5. Lakkakula J.R., Krause R.W.M. // Nanomedicine. 2014. V. 9. P. 877-894. https://doi.org/10.2217/nnm.14.41
- 6. Crini G. // Chem. Rev. 2014. V. 114. P. 10940-10975. https://doi.org/10.1021/cr500081p
- 7. Biwer A., Antranikian G., Heinzle E. // Appl. Microbiol. Biotechnol. 2002. V. 59. P. 609-617. https://doi.org/10.1007/s00253-002-1057-x
- 8. Bonnet V., Gervaise C., Djedaïni-Pilard F., Furlan A., Sarazin C. // Drug Discov. Today. 2015. V. 20. P. 1120- 1126. https://doi.org/10.1016/j.drudis.2015.05.008
- 9. Mazzaglia A., Bondì M.L., Scala A., Zito F., Barbieri G., Crea F., Vianelli G., Mineo P., Fiore T., Pellerito C., Pellerito L., Costa M.A. // Biomacromolecules. 2013. V. 14. P. 3820-3829. https://doi.org/10.1021/bm400849n
- 10. Aranda C., Urbiola K., Méndez Ardoy A., García Fernández J.M., Ortiz Mellet C., de Ilarduya C.T. // Eur. J. Pharm. Biopharm. 2013. V. 85. P. 390-397. https://doi.org/10.1016/j.ejpb.2013.06.011
- 11. Roux M., Sternin E., Bonnet V., Fajolles C., Djedaïni-Pilard F. // Langmuir. 2013. V. 29. P. 3677-3687. https://doi.org/10.1021/la304524a
- 12. Niikura K., Matsunaga T., Suzuki T., Kobayashi S., Yamaguchi H., Orba Y., Kawaguchi A., Hasegawa H., Kajino K., Ninomiya T., Ijiro K., Sawa H. // ACS Nano. 2013. V. 7. P. 3926-3938. https://doi.org/10.1021/nn3057005
- 13. Docter D., Westmeier D., Markiewicz M., Stolte S., Knauer S.K., Stauber R.H. // Chem. Soc. Rev. 2015. V. 44. P. 6094-6121. https://doi.org/10.1039/c5cs00217f
- 14. Gervaise C., Bonnet V., Wattraint O., Aubry F., Sarazin C., Jaffrès P.A., Djedaïni-Pilard F. // Biochimie. 2015. V. 94. P. 66-74. https://doi.org/10.1016/j.biochi.2011.09.005
- 15. Zerkoune L., Angelova A., Lesieur S. // Nanomaterials (Basel). 2014. V. 4. P. 741-765. https://doi.org/10.3390/nano4030741
- 16. Auzély-Velty R., Djedaïni-Pilard F., Désert S., Perly B., Zemb T.H. // Langmur. 2000. V. 16. P. 3727-3734. https://doi.org/10.1021/la991361z
- 17. Nozaki T., Maeda Y., Ito K., Kitano H. // Macromolecules. 1995. V. 28. P. 522-524. https://doi.org/10.1021/ma00106a016
- 18. Kauscher U., Stuart M.C.A., Druc ker P., Galla H.-J., Ravoo B.J. // Langmuir. 2013. V. 29. P. 7377-7383. https://doi.org/10.1021/la3045434
- 19. Erdogar N., Esendaglı G., Nielsen T.T., Şen M., Öner L., Bilensoy E. // Int. J. Pharm. 2016. V. 509. P. 375-390. https://doi.org/10.1016/j.ijpharm.2016.05.040
- 20. Shao S., Si J., Tang J., Sui M., Shen Y. // Macromolecules. 2014. V. 47. P. 916-921. https://doi.org/10.1021/ma4025619
- 21. Moutard S., Perly B., Godé P., Demailly G., Djedaïni-Pilard F. // J. Incl. Phenom. 2002. V. 44. P. 317 -322.
- 22. Geze A., Choisnard L., Putaux J.L., Wouessidjewe D. // Mater. Sci. Eng. 2009. V. 29. P. 458-462. https://doi.org/10.1016/j.msec.2008.08.027
- 23. Pedersen N.R., Kristensen J.B., Bauw G., Ravoo B.J., Darcy R., Larsena K.L., Pedersen L.H. // Tetrahedron Asymmetry. 2005. V. 16. P. 615-622. https://doi.org/10.1016/j.tetasy.2004.12.009
- 24. Yaméogo J.B., Geze A., Choisnard L., Putaux J.L., Gansané A., Sirima S.B., Semdé R., Wouessidjewe D. // Eur. J. Pharm. Biopharm. 2012. V. 80. P. 508-517. https://doi.org/10.1016/j.ejpb.2011.12.007
- 25. Essa S., Rabanel J.M., Hildgen P. // Int. J. Pharm. 2010. V. 388. P. 263-273. https://doi.org/10.1016/j.ijpharm.2009.12.059
- 26. Bhattacharjee S. // J. Control. Release. 2016. V. 235. P. 337-351. https://doi.org/10.1016/j.jconrel.2016.06.017
- 27. Lesieur S., Charon D., Lesieur P., Ringard-Lefebvre C., Muguet V., Duchêne D., Wouessidjewe D. // Chem. Phys. Lipids. 2000. V. 106. P. 127-144. https://doi.org/10.1016/S0009-3084 (00)00149-3
- 28. Kasselouri A., Coleman A.W., Baszkin A. // J. Colloid Interface Sci. 1996. V. 180. P. 384-397. https://doi.org/10.1006/jcis.1996.0317
- 29. LoPresti C., Massignani M., Fernyhough C., Blanazs A., Ryan A.J., Madsen J., Warren N.J., Armes S.P., Lewis A.L., Chirasatitsin S., Engler A.J., Battaglia G. // ACS Nano. 2011. V. 5. P. 1775-1784. https://doi.org/10.1021/nn102455z
- 30. Putaux J.L., Lancelon-Pin C., Legrand F.X., Pastrello M., Choisnard L., Gèze A., Rochas C., Wouessidjewe D. // Langmuir. 2017. V. 33. P. 7917-7928. https://doi.org/10.1021/acs.langmuir.7b01136
- 31. Oliva E., Mathiron D., Rigaud S., Monflier E., Sevin E., Bricout H., Tilloy S., Gosselet F., Fenart L., Bonnet V., Pilard S., Diedaini-Pilard F. // Biomolecules. 2020. V. 10. P. 339. https://doi.org/10.3390/biom10020339
- 32. Feigin L.A., Svergun D.I. // Structure Analysis by Small-Angle X-Ray and Neutron Scattering. New York: Plenum Press, 1987. V. 1. P. 14-15. https://link.springer.com/book/10.1007/978-1-47576624-0
- 33. Auzély-Velty R., Perly B., Taché O., Zemb T., Jéhan P., Guenot P., Dalbiez J.-P., Djedaıni-Pilard F. // Carbohydr. Res. 1999. V. 318. P. 82-90. https://doi.org/10.1016/S0008-6215 (99)00086-5
- 34. Roling O., Wendeln C., Kauscher U., Seelheim P., Galla H.-J., Ravoo B.J. // Langmuir. 2013. V. 29. P. 10174-10182. https://doi.org/10.1021/la4011218
- 35. Choisnard L., Gèze A., Putaux J.L., Wong Y.S., Wouessidjewe D. // Biomacromolecules. 2006. V. 7. P. 515- 520. https://doi.org/10.1021/bm0507655
- 36. Godinho B.M.D.C., Ogier J.R., Darcy R., O’Driscoll C.M., Cryan J.F. // Mol. Pharm. 2013. V. 10. P. 640-649. https://doi.org/10.1021/mp3003946
- 37. Chen P., Hub J.S. // Biophys. J. 2015. V. 108. P. 2573- 2584. https://doi.org/10.1016/j.bpj.2015.03.062
- 38. Vaskan I.S., Prikhodko A.T., Petoukhov M.V., Shtykova E.V., Bovin N.V., Tuzikov A.B., Oleinikov V.A., Zalygin A.V. // Colloids and Surfaces B: Biointerfaces. 2023. V. 224. P. 113183. https://doi.org/10.1016/j.colsurfb.2023.113183
- 39. Zalygin A., Solovyeva D., Vaskan I., Henry S., Schaefer M., Volynsky P., Tuzikov A., Korchagina E., Ryzhov I., Nizovtsev A., Mochalov K., Efremov R., Shtykova E., Oleinikov V., Bovin N. // ChemistryOpen. 2020. V. 9. P. 641-648. https://doi.org/10.1002/open.201900276
- 40. Zhou X., Liang J.F. // J. Photochem. Photobiol. A Chemistry. 2017. V. 349. P. 124-128. https://doi.org/10.1016/j.jphotochem.2017.09.032