- PII
- S0132342325020139-1
- DOI
- 10.31857/S0132342325020139
- Publication type
- Review
- Status
- Published
- Authors
- Volume/ Edition
- Volume 51 / Issue number 2
- Pages
- 352-361
- Abstract
- In this work, the activity of the synthetic peptide LKEKK was investigated in a mouse model of tuberculosis induced by Mycobacterium bivis-bovinus 8 strain. Therapy with peptide at doses of 0.01, 0.1 and 1 μg/kg (5 daily injections) significantly reduced the lung injury index of mice compared to animals in the control groups (no treatment and isoniazid treatment). Using [3H]LKEKK, it was shown that the high sensitivity of peritoneal macrophages and splenocytes of infected mice to the peptide was maintained for at least three weeks (Kd 18.6 and 16.7 nM for macrophage and splenocyte membranes, respectively).A study of cytokine production by splenocytes of infected mice showed that on the 24th day after treatment with the peptide (doses of 1 and 10 µg/kg) the secretion of IL-2 was restored to the level observed in uninfected animals. IFN-γ production by spleen cells of infected mice also significantly increased upon peptide treatment. At the same time, IL-4 production decreased in splenocytes. In addition, the peptide treatment stimulated the phagocytic activity of peritoneal macrophages, which was reduced due to tuberculosis infection. Thus, the synthetic peptide LKEKK increased the effectiveness of anti-tuberculosis therapy, as well as the strength of the immune response. The peptide can be used in complex therapy of tuberculosis.
- Keywords
- белки пептиды рецепторы цитокины туберкулез
- Date of publication
- 09.11.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 42
References
- 1. Churchyard G., Kim P., Shah N.S., Rustomjee R., Gandhi N., Mathema B., Dowdy D., Kasmar A., Cardenas V. // J. Infect. Dis. 2017. V. 216. P. S629–S635. https://doi.org/10.1093/infdis/jix362
- 2. Furin J., Cox H., Pai M. // Lancet. 2019. V. 393. P. 1642–1656. https://doi.org/10.1016/S0140-6736 (19)30308-3
- 3. Natarajan A., Beena P.M., Devnikar A.V., Mali S. // Indian. J. Tuberc. 2020. V. 67. P. 295–311. https://doi.org/10.1016/j.ijtb.2020.02.005
- 4. Jacobo-Delgado Y.M., Rodríguez-Carlos A., Serrano C.J., Rivas-Santiago B. // Front. Immunol. 2023. V. 14. P. 1194923. https://doi.org/10.3389/fimmu.2023.1194923
- 5. Chiaradia L., Lefebvre C., Parra J., Marcoux J., Burlet-Schiltz O., Etienne G., Tropis M., Daffé M. // Sci. Rep. 2017. V. 7. P. 12807. https://doi.org/10.1038/s41598-017-12718-4
- 6. Stokas H., Rhodes H.L., Purdy G.E. // Tuberculosis. 2020. V. 125. P. 102007. https://doi.org/10.1016/j.tube.2020.102007
- 7. Grzegorzewicz A.E., de Sousa-d’Auria C., McNeil M.R., Huc-Claustre E., Jones V., Petit C., Angala S.K., Zemanová J., Wang Q., Belardinelli J.M., Gao Q., Ishizaki Y., Mikušová K., Brennan P.J., Ronning D.R., Chami M., Houssin C., Jackson M. // J. Biol. Chem. 2016. V. 291. P. 18867–18879. https://doi.org/10.1074/jbc.M116.739227
- 8. Singh P., Rameshwaram N.R., Ghosh S., Mukhopadhyay S. // Future Microbiol. 2018. V. 13. P. 689– 710. https://doi.org/10.2217/fmb-2017-0135
- 9. Singh G., Kumar A., Maan P., Kaur J. // Curr. Drug Targets. 2017. V. 18. P. 1904–1918. https://doi.org/10.2174/1389450118666170711150034
- 10. Khadela A., Chavda V.P., Postwala H., Shah Y., Mistry P., Apostolopoulos V. // Vaccines (Basel). 2022. V. 10. P. 1740. https://doi.org/10.3390/vaccines10101740
- 11. Navolotskaya E.V., Sadovnikov V.B., Zinchenko D.V., Vladimirov V.I., Zolotarev Y.A., Lipkin V.M., Murashev A.N. // Russ. J. Bioorg. Chem. 2019. V. 45. P. 122–128. https://doi.org/10.1134/S1068162019020092
- 12. Navolotskaya E.V., Sadovnikov V.B., Zinchenko D.V., Zav’yalov V.P., Murashev A.N. // J. Clin. Exp. Immunol. 2021. V. 6. P. 356–361. https://doi.org/doi.org/10.33140/JCEI.06.05.02
- 13. Navolotskayaa E.V., Zinchenkoa D.V., Murashev A.N. // Russ. J. Bioorg. Chem. 2023. V. 49. P. 35–40. https://doi.org/10.1134/S106816202301020X
- 14. Navolotskaya E.V., Sadovnikov V.B., Zinchenko D.V., Murashev A.N. // J. Clin. Exp. Immunol. 2023. V. 8. P. 590–595. https://doi.org/10.33140/JCEI.08.03.01
- 15. Ellner J.J. // J. Lab. Clin. Med. 1997. V. 130. P. 469– 475. https://doi.org/10.1016/s0022-2143 (97)90123-2
- 16. Estrada García I., Hernández Pando R., Ivanyi J. // Front. Immunol. 2021. V. 12. P. 684200. https://doi.org/10.3389/fimmu.2021.684200
- 17. Torres-Juarez F., Trejo-Martínez L.A., Layseca-Espinosa E., Leon-Contreras J.C., Enciso-Moreno J.A., Hernandez-Pando R., Rivas-Santiago B. // Microb. Pathog. 2021. V. 153. P. 104768. https://doi.org/10.1016/j.micpath.2021.104768
- 18. Kaufmann S.H., Ladel C.H., Flesch I.E. // Ciba Found Symp. 1995. V. 195. P. 123–132. https://doi.org/10.1002/9780470514849.ch9
- 19. Mustafa T., Phyu S., Nilsen R., Jonsson R., Bjune G. // Scand. J. Immunol. 2000. V. 51. P. 548–556. https://doi.org/10.1046/j.1365-3083.2000.00721.x
- 20. Vasiliu A., Martinez L., Gupta R.K., Hamada Y., Ness T., Kay A., Bonnet M., Sester M., Kaufmann S.H.E., Lange C., Mandalakas A.M. // Clin. Microbiol. Infect. 2024. V. 30. P. 1123-1130. https://doi.org/10.1016/j.cmi.2023.10.023
- 21. Lange C., Aaby P., Behr M.A., Donald P.R., Kaufmann S.H.E., Netea M.G., Mandalakas A.M. // Lancet Infect. Dis. 2022. V. 22. P. e2–e12. https://doi.org/10.1016/S1473-3099 (21)00403-5
- 22. Baliko Z., Szereday L., Szekeres-Bartho J. // FEMS Immunol. 1998. Med. Microbiol. V. 22. P. 199–204. https://doi.org/10.1111/j.1574-695X.1998.tb01207.x
- 23. Dieli F., Singh M., Spallek R., Romano A., Titone L., Sireci G., Friscia G., Di Sano C., Santini D., Salerno A., Ivanyi J. // Scand. J. Immunol. 2000. V. 52. P. 96–102. https://doi.org/10.1046/j.1365-3083.2000.00744.x
- 24. Tamburini B., Badami G.D., Azgomi M.S., Dieli F., La Manna M.P., Caccamo N. // Tuberculosis (Edinb). 2021. V. 130. P. 102–109. https://doi.org/10.1016/j.tube.2021.102109
- 25. Shiratsuchi H., Okuda Y., Tsuyuguchi I. // Infect. Immun. 1987. V. 55. P. 2126–2131. https://doi.org/10.1128/iai.55.9.2126-2131
- 26. McDyer J.F., Hackley M.N., Walsh T.E., Cook J.L., Seder R.A. // J. Immunol. 1997. V. 158. P. 492–500.
- 27. McDyer J.F., Li Z., John S., Yu X., Wu C.Y., Ragheb J.A. // J. Immunol. 2002. V. 169. P. 2736–2746. https://doi.org/10.4049/jimmunol.169.5.2736
- 28. Bermudez L.E., Stevens P., Kolonoski P., Wu M., Young L.S. // J. Immunol. 1989. V. 143. P. 2996–3000.
- 29. Denis M. // Cell. Immunol. 1991. V. 132. P. 150–157. https://doi.org/10.1016/0008-8749 (91)90014-3
- 30. Suárez-Méndez R., García-García I., FernándezOlivera N., Valdés-Quintana M., Milanés-Virelles M.T., Carbonell D., Machado-Molina D., ValenzuelaSilva C.M., López-Saura P.A. // BMC Infect. Dis. 2004. V. 4. P. 44. https://doi.org/10.1186/1471-2334-4-44
- 31. Giosue S., Casarini M., Ameglio F., Zangrilli P., Palla M., Altieri A.M., Bisetti A. // Eur. Cytokine Netw. 2000. V. 11. P. 99–104.
- 32. Kobayashi K., Kasama T. // Nihon Hansenbyo Gakkai Zasshi. 2000. V. 69. P. 77–82. https://doi.org/10.5025/hansen.69.77
- 33. Greinert U., Ernst M., Schlaak M., Entzian P. // Eur. Respir. J. 2001. V. 17. P. 1049–1051. https://doi.org/10.1183/09031936.01.17510490
- 34. Phyu S., Tadesse A., Mustafa T., Tadesse S., Jonsson R., Bjune G. // Scand. J. Immunol. 2000. V. 51. P. 147–154. https://doi.org/10.1046/j.1365-3083.2000.00662.x
- 35. Beltan E., Horgen L., Rastogi N. // Microb. Pathog. 2000. V. 28. P. 313–318. https://doi.org/10.1006/mpat.1999.0345
- 36. Ragno S., Romano M., Howell S., Pappin D.J., Jenner P.J., Colston M.J. // Immunol. 2001. V. 104. P. 99–108. https://doi.org/10.1046/j.0019-2805.2001.01274.x
- 37. Zolotarev Y.A., Dadayan A.K., Bocharov E.V., Borisov Y.A., Vaskovsky B.V., Dorokhova E.M., Myasoedov N.F. // Amino Acids. 2003. V. 24. P. 325–333. https://doi.org/10.1007/s00726-002-0404-7
- 38. Sadovnikov V.B., Navolotskaya E.V. // J. Pept. Sci. 2014. V. 20. P. 212–215. https://doi.org/10.1002/psc.2603
- 39. Sadovnikov V.B., Zinchenko D.V., Navolotskaya E.V. // Russ. J. Bioorg. Chem. 2016. V. 42. P. 269–271. https://doi.org/10.1134/S1068162016030122
- 40. Dal Farra C., Zsurger N., Vincent J.-P., Cupo A. // Peptides. 2000. V. 21. P. 577–587. https://doi.org/10.1016/s0196-9781 (00)00182-0
- 41. Lowry O.H., Rosebbrough N.J., Farr O.L., Randal R.J. // J. Biol. Chem. 1951. V. 193. P. 265–275.
- 42. Pennock B.E. // Anal. Biochem. 1973. V. 56. P. 306– 309. https://doi.org/10.1016/0003-2697 (73)90195-4
- 43. Cheng Y.C., Prusoff W. // Biochem. Pharmacol. 1973. V. 22. P. 3099–3108. https://doi.org/10.1016/0006-2952 (73)90196-2