RAS BiologyБиоорганическая химия Russian Journal of Bioorganic Chemistry

  • ISSN (Print) 0132-3423
  • ISSN (Online) 1998-2860

Single-Domain Nanobodies for Determination of Conformational Changes in Transferrin and Their Use in Fluorescent Polarization Immunoassay

PII
S0132342325020063-1
DOI
10.31857/S0132342325020063
Publication type
Review
Status
Published
Authors
Volume/ Edition
Volume 51 / Issue number 2
Pages
280-290
Abstract
A method for the synthesis of aTf1 and aTf2 nanobodies conjugates, previously obtained for human holo- and apo-transferrin (Tf) with fluorescein isothiocyanate (FITC), is proposed. The conjugates were used as tracers for the fluorescence polarization immunoassay (FPIA) method with nanobodies. Optimal concentrations of FITC-aTf1 and FITC-aTf2 conjugates (2.5–5 nM) were selected. Binding kinetics of FITC-aTf1 and FITC-aTf2 with holo- and apo-Tf was studied. A complete binding of FITC-aTf1 and FITC-aTf2 conjugates with holo- and apo-Tf was observed after 15 and 5 min of incubation, respectively. The equilibrium dissociation constants of FITC-aTf1*holo-Tf and FITC-aTf2*apo-Tf complexes were determined, which amounted to 30.7 ± 0.3 and 15.3 ± 0.2 nM. A high specificity of analysis was verified by the incubation of FITC-aTf1 and FITC-aTf2 conjugates with other human proteins, lactoferrin, serum albumin, lysozyme. A high affinity of the conjugates FITC-aTf1 and FITC-aTf2 to holo- and apo-Tf was also shown. The synthesized FITC-aTf1 and FITC-aTf2 conjugates have potential for determining transferrin various conformations in human physiological fluids. Thus, this work demonstrates the possibility of determining two forms of transferrin in human physiological fluids using the FPIA method, which may have diagnostic value, and the use of a portable fluorescence analyzer will allow this analysis to be carried out outside the walls of specialized laboratories.
Keywords
однодоменное антитело нанотело holo-трансферрин apo-трансферрин поляризационный флуоресцентный иммуноанализ
Date of publication
09.11.2025
Year of publication
2025
Number of purchasers
0
Views
46

References

  1. 1. Tatsumi Y., Yano M., Wakusawa S., Miyajima H., Ishikawa T., Imashuku S., Takano A., Nihei W., Kato A., Kato K., Hayashi H., Yoshioka K., Hayashi K. // J. Clin. Transl. Hepatol. 2024. V. 12. P. 346–356. https://doi.org/10.14218/JCTH.2023.00290
  2. 2. Sarkar J., Potdar A.A., Saidel G.M. // PLoS Comput. Biol. 2018. V. 14. e1006060. https://doi.org/10.1371/journal.pcbi.1006060
  3. 3. Schreiner O.D., Schreiner T.G. // Front. Aging. 2023. V. 4. P. 1234958. https://doi.org/10.3389/fragi.2023.1234958
  4. 4. Tandara L., Salamunic I. // Biochem. Med. (Zagreb). 2012. V. 22. P. 311–328. https://doi.org/10.11613/bm.2012.034
  5. 5. Wally J., Halbrooks P.J., Vonrhein C., Rould M.A., Everse S.J., Mason A.B., Buchanan S.K. // J. Biol. Chem. 2006. V. 281. P. 24934–24944. https://doi.org/10.1074/jbc.M604592200
  6. 6. Baker E.N., Lindley P.F. // J. Inorg. Biochem. 1992. V. 47. P. 147–160. https://doi.org/10.1016/0162-0134 (92)84061-q
  7. 7. Ponzini E., Scotti L., Grandori R., Tavazzi S., Zambon A. // Invest. Ophthalmol. Vis. Sci. 2020. V. 61. P. 9. https://doi.org/10.1167/iovs.61.12.9
  8. 8. Withold W., Neumayer C., Beyrau R., Heins M., Schauseil S., Rick W. // Eur. J. Clin. Chem. Clin. Biochem. 1994. V. 32. P. 19–25. https://doi.org/10.1515/cclm.1994.32.1.19
  9. 9. Elsayed M.E., Sharif M.U., Stack A.G. // Adv. Clin. Chem. 2016. V. 75. P. 71–97. https://doi.org/10.1016/bs.acc.2016.03.002
  10. 10. Muñoz M., García-Erce J.A., Remacha Á.F. // J. Clin. Pathol. 2011. V. 64. P. 287–296. https://doi.org/10.1136/jcp.2010.086991
  11. 11. Szőke D., Panteghini M. // Clin. Chim. Acta. 2012. V. 413. P. 1184–1189. https://doi.org/10.1016/j.cca.2012.04.021
  12. 12. Ivanova T.I., Klabukov I.D., Krikunova L.I., Poluektova M.V., Sychenkova N.I., Khorokhorina V.A., Vorobyev N.V., Gaas M.Y., Baranovskii D.S., Goryainova O.S., Sachko A.M., Shegay P.V., Kaprin A.D., Tillib S.V. // J. Clin. Med. 2022. V. 11. P. 7377. https://doi.org/10.3390/jcm11247377
  13. 13. Baringer S.L., Neely E.B., Palsa K., Simpson I.A., Connor J.R. // Fluids Barriers CNS. 2022. V. 19. P. 49. https://doi.org/10.1186/s12987-022-00345-9
  14. 14. Yang N., Zhang H., Wang M., Hao Q., Sun H. // Sci. Rep. 2012. V. 2. P. 999. https://doi.org/10.1038/srep00999
  15. 15. Baringer S.L., Palsa K., Spiegelman V.S., Simpson I.A., Connor J.R. // J. Biomed. Sci. 2023. V. 30. P. 36. https://doi.org/10.1186/s12929-023-00934-2
  16. 16. Bassett M.L., Halliday J.W., Ferris R.A., Powell L.W. // Gastroenterology. 1984. V. 87. P. 628–633.
  17. 17. MacPhail A.P., Mandishona E.M., Bloom P.D., Paterson A.C., Rouault T.A., Gordeuk V.R. // S. Afr. Med. J. 1999. V. 89. P. 966–972.
  18. 18. Yamanishi H., Iyama S., Yamaguchi Y., Kanakura Y., Iwatani Y. // Clin. Chem. 2003. V. 49. P. 175–178. https://doi.org/10.1373/49.1.175
  19. 19. Huebers H.A., Eng M.J., Josephson B.M., Ekpoom N., Rettmer R.L., Labbé R.F., Pootrakul P., Finch C.A. // Clin. Chem. 1987. V. 33. P. 273–277.
  20. 20. Lopez A., Cacoub P., Macdougall I.C., PeyrinBiroulet L. // Lancet. 2016. V. 387. P. 907–916. https://doi.org/10.1016/S0140-6736 (15)60865-0
  21. 21. Camaschella C. // Blood Rev. 2017. V. 31. P. 225–233. https://doi.org/10.1016/j.blre.2017.02.004
  22. 22. Yamanishi H., Kimura S., Iyama S., Yamaguchi Y., Yanagihara T. // Clin. Chem. 1997. V. 43. P. 2413– 2417. https://doi.org/10.1093/clinchem/43.12.2413
  23. 23. Gambino R., Desvarieux E., Orth M., Matan H., Ackattupathil T., Lijoi E., Wimmer C., Bower J., Gunter E. // Clin. Chem. 1997. V. 43. P. 2408–2412. https://doi.org/10.1093/clinchem/43.12.2408
  24. 24. Strzelak K., Rybkowska N., Wiśniewska A., Koncki R. // Anal. Chim. Acta. 2017. V. 995. P. 43–51. https://doi.org/10.1016/j.aca.2017.10.015
  25. 25. Eleftheriadis T., Liakopoulos V., Antoniadi G., Stefanidis I. // Ren. Fail. 2010. V. 32. P. 1022–1023. https://doi.org/10.3109/0886022X.2010.502609
  26. 26. Kitsati N., Liakos D., Ermeidi E., Mantzaris M.D., Vasakos S., Kyratzopoulou E., Eliadis P., Andrikos E., Kokkolou E., Sferopoulos G., Mamalaki A., Siamopoulos K., Galaris D. // Haematologica. 2015. V. 100. P. e80–e83. https://doi.org/10.3324/haematol.2014.116806
  27. 27. Angoro B., Motshakeri M., Hemmaway C., Svirskis D., Sharma M. // Clin. Chim. Acta. 2022. V. 531. P. 157–167. https://doi.org/10.1016/j.cca.2022.04.004
  28. 28. Agarwal R. // Kidney Int. 2004. V. 66. P. 1139–1144. https://doi.org/10.1111/j.1523-1755.2004.00864.x
  29. 29. DeGregorio-Rocasolano N., Martí-Sistac O., Ponce J., Castelló-Ruiz M., Millán M., Guirao V., García-Yébenes I., Salom J.B., Ramos-Cabrer P., Alborch E., Lizasoain I., Castillo J., Dávalos A., Gasull T. // Redox Biol. 2018. V. 15. P. 143–158. https://doi.org/10.1016/j.redox.2017.11.026
  30. 30. Drain P.K., Hyle E.P., Noubary F., Freedberg K.A., Wilson D., Bishai W.R., Rodriguez W., Bassett I.V. // Lancet Infect. Dis. 2014. V. 14. P. 239–249. https://doi.org/10.1016/S1473-3099 (13)70250-0
  31. 31. Karim K., Lamaoui A., Amine A. // J. Pharm. Biomed. Anal. 2023. V. 225. P. 115207. https://doi.org/10.1016/j.jpba.2022.115207
  32. 32. Arbabi Ghahroudi M., Desmyter A., Wyns L., Hamers R., Muyldermans S. // FEBS Lett. 1997. V. 414. P. 521–526. https://doi.org/10.1016/S0014-5793 (97)01062-4
  33. 33. Muyldermans S. // Annu. Rev. Biochem. 2013. V. 82. P. 775–797. https://doi.org/10.1146/annurev-biochem-063011092449
  34. 34. Sockolosky J.T., Dougan M., Ingram J.R., Ho C.C., Kauke M.J., Almo S.C., Ploegh H.L., Garcia K.C. // Proc. Nat. Acad. Sci. USA. 2016. V. 113. P. E2646– E2654. https://doi.org/10.1073/pnas.1604268113
  35. 35. Mukhametova L.I., Eremin S.A., Arutyunyan D.A., Goryainova O.S., Ivanova T.I., Tillib S.V. // Biochemistry (Moscow). 2022. V. 87. P. 1679–1688. https://doi.org/10.1134/s0006297922120227
  36. 36. Dumoulin M., Conrath K., Van Meirhaeghe A., Meersman F., Heremans K., Frenken L.G., Muyldermans S., Wyns L., Matagne A. // Protein Sci. Publ. Protein Soc. 2002. V. 11. P. 500–515. https://doi.org/10.1110/ps.34602
  37. 37. Xu L., Song X., Jia L. // Biotechnol. Appl. Biochem. 2017. V. 64. P. 895–901. https://doi.org/10.1002/bab.1544
  38. 38. Jovčevska I., Muyldermans S. // BioDrugs Clin. Immunother. Biopharm. Gene Ther. 2020. V. 34. P. 11–26. https://doi.org/10.1007/s40259-019-00392-z
  39. 39. Khodabakhsh F., Behdani M., Rami A., KazemiLomedasht F. // Int. Rev. Immunol. 2018. V. 37. P. 316– 322. https://doi.org/10.1080/08830185.2018.1526932
  40. 40. Mei Y., Chen Y., Sivaccumar J.P., An Z., Xia N., Luo W. // Front. Pharmacol. 2022. V. 13. P. 963978. https://doi.org/10.3389/fphar.2022.963978
  41. 41. Bao G., Tang M., Zhao J., Zhu X. // EJNMMI Res. 2021. V. 11. P. 6. https://doi.org/10.1186/s13550-021-00750-5
  42. 42. Тиллиб С.В., Горяйнова О.С., Сачко А.М., Иванова Т.И. // Acta Naturae. 2022. Т. 14. C. 98–102. https://doi.org/10.32607/actanaturae.11663
  43. 43. Сачко А.М., Горяйнова О.С., Иванова Т.И., Николаева И.Ю., Тарнопольская М.Е., Бычков А.Ю., Гаас М.Я., Воробьев Н.В., Каприн А.Д., Шегай П.В., Тиллиб С.В. // Биохимия. 2023. Т. 88. С. 1352–1365. https://doi.org/10.31857/S0320972523080055
  44. 44. Yu L., Zhong M., Wei Y. // Anal. Chem. 2010. V. 82. P. 7044–7048. https://doi.org/10.1021/ac100543e
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library