ОБНБиоорганическая химия Russian Journal of Bioorganic Chemistry

  • ISSN (Print) 0132-3423
  • ISSN (Online) 1998-2860

Химиотерапевтические борсодержащие гомоцистеинамиды человеческого сывороточного альбумина

Код статьи
S0132342325010113-1
DOI
10.31857/S0132342325010113
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 51 / Номер выпуска 1
Страницы
119-136
Аннотация
Сочетание бор-нейтронозахватной терапии и химиотерапии может обеспечить высокую эффективность лечения раковых опухолей. Создание терапевтических конструкций, совмещающих в себе две эти функции –возможность визуализации in vitro и in vivo и удобную платформу селективной доставки в опухоль, – крайне актуально на сегодняшний день. В данном исследовании мы сосредоточились на сывороточном альбумине человека, хорошо известной платформе доставки лекарств, и разработали на его основе конструкции, функционализированные кластерами бора, аналогами химиотерапевтической молекулы – гемцитабина и сигнальными молекулами. Для создания конструкций нами были разработаны новые аналоги тиолактона гомоцистеина, содержащие клозо-додекаборат, или бис(дикарболлид) кобальта, и аналог гемцитабина, содержащий клозо-додекаборат, присоединенный к С5-атому углерода азотистого основания. Продемонстрировано, что добавление в структуру конъюгатов гемцитабиновых аналогов повышает их цитотоксичность в отношении клеточных линий глиобластомы человека. Среди итоговых конъюгатов наибольшей цитотоксичностью обладает конструкция, имеющая в своем составе бис(дикарболлид) кобальта. Итоговые конструкции хорошо накапливаются в цитоплазме раковых клеток. Конъюгат альбумина, имеющий в своем составе бис(дикарболлид) кобальта и борсодержащий аналог гемцитабина, способен накапливаться в ядрах клеток линии T98G. Таким образом, в экспериментах in vitro обе итоговые конструкции на основе альбумина показали достаточную эффективность в отношении линии клеток глиомы человека. Мы ожидаем, что сконструированные нами терапевтические конъюгаты значительно увеличат цитотоксичность в отношении раковых клеток при облучении эпитепловыми нейтронами. Совмещение в составе одной конструкции химиотерапевтического остатка и борсодержащей группы дает в перспективе возможность для проведения более эффективной терапии глиом.
Ключевые слова
тераностики на основе борированного альбумина борсодержащие аналоги гемцитабина борсодержащие аналоги тиолактона гомоцистеина бор-нейтроно-захватная терапия средства доставки бора
Дата публикации
09.11.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
38

Библиография

  1. 1. Sathornsumetee S., Reardon D.A., Desjardins A., Quinn J.A., Vredenburgh J.J., Rich J.N. // Cancer. 2007. V. 110. P. 13–24. https://doi.org/10.1002/cncr.22741
  2. 2. Chen R., Smith-Cohn M., Cohen A.L., Colman H. // Neurotherapeutics. 2017. V. 14. P. 284–297. https://doi.org/10.1007/s13311-017-0519-x
  3. 3. Sweety A., Abhishek C., Sandhya Y., Godhanjali C., Atharva K., Ankesh K. J., Jayant S. G., Rahul P. // Int. Rev. Immunol. 2022. V. 41. P. 582–605. https://doi.org/10.1080/08830185.2022.2101647
  4. 4. Lan G., Song Q., Luan Y., Cheng Y. // Int. J. Pharm. 2024. V. 650. P. 123747. https://doi.org/10.1016/j.ijpharm.2023.123747
  5. 5. Lansangan C., Khoobchandani M., Jain R., Rudensky S., Perry C.C., Patil R. // Materials (Basel). 2024. V. 17. P. 1153. https://doi.org/10.3390/ma17051153
  6. 6. Yu X., Zhu W., Di Y., Gu J., Guo Z., Li H., Fu D., Jin C. // Int. J. Nanomedicine. 2017. V. 12. P. 6771–6785. https://doi.org/10.2147/ijn.s131295
  7. 7. Guo Z., Wang F., Di Y., Yao L., Yu X., Fu D., Li J., Jin C. // Int. J. Nanomedicine. 2018. V. 13. P. 4869– 4880. https://doi.org/10.2147/ijn.s166769
  8. 8. Matsushita K., Okuda T., Mori S., Konno, M., Eguchi H., Asai A., Koseki J., Iwagami Y., Yamada D., Akita H., Asaoka T., Noda T., Kawamoto K., Gotoh K., Kobayashi S., Kasahara Y., Morihiro K., Satoh T., Doki Y., Mori M., Ishii H., Obika S.A. // ChemMedChem. 2019. V. 14. P. 1384–1391. https://doi.org/10.1002/cmdc.201900324
  9. 9. Xu Y., Huang Y., Lu W., Liu S., Xiao Y., Yu J. // Eur. J. Pharm. Biopharm. 2019. V. 144. P. 193–206. https://doi.org/10.1016/j.ejpb.2019.09.019
  10. 10. Samaniego L.C., Martínez J.H., Acebedo S.L., Spagnuolo C.C. // Bioorg. Chem. 2019. V. 90. P. 103059. https://doi.org/10.1016/j.bioorg.2019.103059
  11. 11. Evens A.M., Rosen S.T., Helenowski I., Kline J., Larsen A., Colvin J., Winter J.N., van Besien K.M., Gordon L.I., Smith S.M. // Br. J. Haematol. 2013. V. 163. P. 55–61. https://doi.org/10.1111/bjh.12488
  12. 12. Pandit B., Royzen M. // Genes (Basel). 2022. V. 13. P. 466. https://doi.org/10.3390/genes13030466
  13. 13. Paroha S., Verma J., Dubey R.D., Dewangan R.P., Molugulu N., Bapat R.A., Sahoo P.K., Kesharwani P. // Int. J. Pharm. 2021. V. 592. P. 120043. https://doi.org/10.1016/j.ijpharm.2020.120043
  14. 14. Elzoghby A.O., Samy W.M., Elgindy S.N. // J. Control. Release. 2012. V. 157. P. 168–182. https://doi.org/10.1016/j.jconrel.2011.07.031
  15. 15. Cho H., Jeon S.I., Ahn C-H., Shim M.K., Kim K. // Pharmaceutics. 2022. V. 14. P. 728. https://doi.org/10.3390/pharmaceutics14040728
  16. 16. Li C., Zhang D., Pan Y., Chen B. // Polymers. (Basel). 2023. V. 15. P. 3354. https://doi.org/10.3390/polym15163354
  17. 17. Tao H.Y., Wang R.Q., Sheng W.J., Zhen Y.S. // Int. J. Biol. Macromol. 2021. V. 187. P. 24–34. https://doi.org/10.1016/j.ijbiomac.2021.07.080
  18. 18. Yu X., Ruan M., Wang Y., Nguyen A., Xiao W., Ajena Y., Solano L.N., Liu R., Lam K.S. // Bioconjug. Chem. 2022. V. 33. P. 2332–2340. https://doi.org/10.1021/acs.bioconjchem.2c00361
  19. 19. Ma T., Jiang J.L., Qi W.X., Chen J.Y., Xu H.P. // Drug. Des. Devel. Ther. 2022. V. 16. P. 2395–2406. https://doi.org/10.2147/dddt.s366558
  20. 20. Kong L., Du J., Gu J., Deng J., Guo Y., Tao B., Jin C., Fu D., Li J. // Front. Surg. 2022. V. 9. P. 890412. https://doi.org/10.3389/fsurg.2022.890412
  21. 21. Wang X., Liang Y., Fei S., He H., Zhang Y., Yin T., Tang X. // AAPS PharmSciTech. 2018. V. 19. P. 812– 819. https://doi.org/10.1208/s12249-017-0888-9
  22. 22. Norouzi P., Amini M., Mottaghitalab F., Mirzazadeh Tekie F.S., Dinarvand R., Mirzaie Z.H., Atyabi F. // Chem. Biol. Drug. Des. 2020. V. 96. P. 745–757. https://doi.org/10.1111/cbdd.13044
  23. 23. Han H., Wang J., Chen T., Yin L., Jin Q., Ji J. // J. Colloid. Interface Sci. 2017. V. 507. P. 217–224. https://doi.org/10.1016/j.jcis.2017.07.047
  24. 24. Raskolupova V.I., Wang M., Dymova M.A., Petrov G.O., Shchudlo I.M., Taskaev S.Y., Abramova T.V., Godovikova T.S., Silnikov V.N., Popova T.V. // Molecules. 2023. V. 28. P. 2672. https://doi.org/10.3390/molecules28062672
  25. 25. Rak J., Kaplánek R., Král V. // Bioorg. Med. Chem. Lett. 2010. V. 20. P. 1045–1048. https://doi.org/10.1016/j.bmcl.2009.12.038
  26. 26. Rak J., Jakubek M., Kaplánek R., Matějíček P., Král V. // Eur. J. Med. Chem. 2011. V. 46. P. 1140–1146. https://doi.org/10.1016/j.ejmech.2011.01.032
  27. 27. Goszczyński T.M., Fink K., Kowalski K., Leśnikowski Z.J., Boratyński J. // Sci. Rep. 2017. V. 7. P. 9800. https://doi.org/10.1038/s41598-017-10314-0
  28. 28. Kikuchi S., Kanoh D., Sato S., Sakurai Y., Suzuki M., Nakamura H. // J. Control. Release. 2016. V. 237. P. 160–167. https://doi.org/10.1016/j.jconrel.2016.07.017
  29. 29. Ishii S., Sato S., Asami H., Hasegawa T., Kohno J., Nakamura H. // Org. Biomol. Chem. 2019. V. 17. P. 5496–5499. https://doi.org/10.1039/c9ob00584f
  30. 30. Nakamura H., Kikuchi S., Kaway K., Ishii S., Sato S. // Pure Appl. Chem. 2018. V. 90. P. 745–753. https://doi.org/10.1515/pac-2017-1104
  31. 31. Sato S., Ishii H., Nakamura H. // Eur. J. Inorg. Chem. 2017. V. 2017. P. 4345. https://doi.org/10.1002/ejic.201701118
  32. 32. Popova T.V., Dymova M.A., Koroleva L.S., Zakharova O.D., Lisitskiy V.A., Raskolupova V.I., Sycheva T.V., Taskaev S.Yu., Silnikov V.N., Godovikova T.S. // Molecules. 2021. V. 26. P. 6537. https://doi.org/10.3390/molecules26216537
  33. 33. Wang M., Moskalev I.A., Zakharova O.D., Kasatova A.I., Silnikov V.N., Popova T.V., Godovikova T.S. // J. Biol. Today’s World. 2024. V. 13. P. 001–007. https://doi.org/10.35248/2322-3308-13.1.001
  34. 34. Lisitskiy V.A., Khan H., Popova T.V., Chubarov A.S., Zakharova O.D., Akulov A.E., Shevelev O.B., Zavjalov E.L., Kop-tyug I.V., Moshkin M.P., Silnikov V.N., Ahmad S., Godovikova T.S. // Bioorg. Med. Chem. Lett. 2017. V. 27. P. 3925–3930. https://doi.org/10.1016/j.bmcl.2017.05.084
  35. 35. Raskolupova V.I., Popova T.V., Zakharova O.D., Nikotina A.E., Abramova T.V., Silnikov V.N. // Molecules. 2021. V. 26. P. 2679. https://doi.org/10.3390/molecules26092679
  36. 36. Popova T.V., Pyshnaya I.A., Zakharova O.D., Akulov A.E., Shevelev O.B., Poletaeva J., Zavjalov E.L., Silnikov V.N., Ryabchikova E.I., Godovikova T.S. // Biomedicines. 2021. V. 9. P. 74. https://doi.org/10.3390/biomedicines9010074
  37. 37. Popova T.V., Krumkacheva O.A., Burmakova A.S., Spitsyna A.S., Zakharova O.D., Lisitskiy V.A., Kirilyuk I.A., Silnikov V.N., Bowman M.K., Bagryanskaya E.G., Godovikova T.S. // RSC Med. Chem. 2020. V. 11. P. 1314–1325. https://doi.org/10.1039/c9md00516a
  38. 38. Popova T.V., Khan H., Chubarov A.S., Lisitskiy V.A., Antonova N.M., Akulov A.E., Shevelev, O.B., Zavjalov, E.L., Silnikov, V.N., Ahmad, S., Godovikova T.S. // Bioorg. Med. Chem. Lett. 2018. V. 28. P. 260–264. https://doi.org/10.1016/j.bmcl.2017.12.061
  39. 39. Chubarov A.S., Zakharova O.D., Koval O.A., Romaschenko A.V., Akulov A.E., Zavjalov E.L., Razumov I.A., Koptyug I.V., Knorre D.G., Godovikova T.S.// Bioorg. Med. Chem. 2015. V. 23. 6943–6954. https://doi.org/10.1016/j.bmc.2015.09.043
  40. 40. Miyamura S., Imafuku T., Anraku M., Taguchi K., Yamasaki K., Tominaga Y., Maeda H., Ishima Y., Watanabe H., Otagiri M., Maruyama T. // J. Pharm. Sci. 2016. V. 105. P. 1043–1049. https://doi.org/10.1016/j.xphs.2015.12.015
  41. 41. Ma Q., Long W., Xing C., Chu J., Luo M., Wang H.Y., Liu Q., Wang R.F. // Front. Immunol. 2018. V. 9. P. 2924. https://doi.org/10.3389/fimmu.2018.02924
  42. 42. Hu H., Ng T.S.C., Kang M., Scott E., Li R., Quintana J.M., Matvey D., Vantaku V.R., Weissleder R., Parangi S., Miller M.A. // Clin. Cancer. Res. 2023. V. 29. P. 3457–3470. https://doi.org/10.1158/1078-0432.ccr-22-2976
  43. 43. Maeda H., Wu J., Sawa T., Matsumura Y., Hori K. // J. Control. Release. 2000. V. 65. P. 271–284. https://doi.org/10.1016/s0168-3659 (99)00248-5
  44. 44. Park C.R., Jo J.H., Song M.G., Park J.Y., Kim Y.H., Youn H., Paek S.H., Chung J.K., Jeong J.M., Lee Y.S., Kang K.W. // Theranostics. 2019. V. 9. P. 7447–7457. https://doi.org/10.7150/thno.34883
  45. 45. Zhao P., Wang Y., Wu A., Rao Y., Huang Y. // ChemBioChem. 2018. V. 19. P. 1796–1805. https://doi.org/10.1002/cbic.201800201
  46. 46. Cui T., Corrales-Guerrero S., Castro-Aceituno V., Nair S., Maneval D.C., Monnig C., Kearney P., Ellis S., Raheja N., Raheja N., Williams T.M. // Mol. Ther. Oncolytics. 2023. V. 18. P. 181–192. https://doi.org/10.1016/j.omto.2023.08.008
  47. 47. Peters R.A. // Mechanism of the toxicity of the active constituent of dichapetalum cymosum and related compounds. In: Advances in Enzymology / Eds. Nord F.F. Geneva: Interscience Publishers Inc., 1957. P. 113–159.
  48. 48. Cleveland D.W., Fischer S.G., Kirschner M.W., Laemmli U.K. // J. Biol. Chem. 1977. V. 252. P. 1102– 1106.
  49. 49. Mosmann T. // J. Immunol. Methods. 1983. V. 65. P. 55–63. https://doi.org/10.1016/0022-1759 (83)90303-4
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека