RAS BiologyБиоорганическая химия Russian Journal of Bioorganic Chemistry

  • ISSN (Print) 0132-3423
  • ISSN (Online) 1998-2860

Preparation of boron-containing s-nitrosothiol based on homocysteinylamides of human serum albumin for combined no-chemical and boron-neutron-capture therapy

PII
S0132342325010101-1
DOI
10.31857/S0132342325010101
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 51 / Issue number 1
Pages
105-118
Abstract
The strategic aim of this work is to create a fluorophore-labelled, clinically relevant exogenous NO donor carrying a boron-containing compound residue on the basis of human serum albumin (HSA) for the implementation of combined NO-chemotherapy and boron-neutron-capture therapy. By selective modification of the Cys34 residue of albumin with a maleimide derivative of a fluorescent dye and subsequent N-homocysteinylation with a thiolactone derivative of homocysteine containing a clozo-dodecaborate residue, a nanoconstruct for boron-neutron-capture therapy was obtained. An analogue based on the natural modifier, boron-containing homocysteine thiolactone, was synthesised by alkylation of the amino group of thiolactone with a dioxonium derivative of clozo-dodecaborate. Post-synthetic modification of the lysine residues of the protein using the boron thiolactone of homocysteine provided the introduction of SH groups into the protein and the possibility of subsequent trans-S-nitrosylation of the protein using S-nitrosoglutathione. It was found that 2 mol of NO was conjugated to 1 mol of boron-containing HSA. Boron-containing S-nitrosothiol based on albumin homocysteinylamide, without epithermal neutron irradiation, was demonstrated to be more cytotoxic against human glioblastoma cell lines than the boron-containing albumin conjugate. Thus, the approach used allows obtaining a boron-enriched structure based on a biocompatible tumor-specific protein, containing a fluorescent label and an increased number of S-nitroso groups. It is necessary for the manifestation of a chemotherapeutic effect of the construct. The practical significance of this structure lies in the possibility of a cancer treating, combining chemo- and boron-neutron capture therapy.
Keywords
S-нитрозоглутатион клозо-додекаборат борсодержащий тиолактон гомоцистеина S-нитрозилированный борсодержащий гомоцистеиниламид альбумина бор-нейтронозахватная терапия
Date of publication
09.11.2025
Year of publication
2025
Number of purchasers
0
Views
49

References

  1. 1. Lancaster J.R. // Biochem. Pharmacol. 2020. V. 176. P. 113793. https://doi.org/10.1016/j.bcp.2020.113793
  2. 2. Lundberg J.O., Weitzberg E. // Cell. 2022. V. 185. P. 2853–2878. https://doi.org/10.1016/j.cell.2022.06.010
  3. 3. Kannan M.S., Guiang S., Johnson D.E. // Indian J. Pediatr. 1998. V. 65. P. 333–345. https://doi.org/10.1007/BF02761123
  4. 4. Moncada S., Palmer R.M., Higgs E.A. // Pharmacol. Rev. 1991. V. 43. P. 109–142.
  5. 5. Thomas D.D., Liu X., Kantrow S.P., Lancaster J.R. // Proc. Natl. Acad. Sci. USA. 2001. V. 98. P. 355–360. https://doi.org/10.1073/pnas.011379598
  6. 6. Осипов А.Н., Борисенко Г.Г., Владимиров Ю.А. // Усп. биол. химии. 2007. Т. 47. С. 259–292.
  7. 7. Ванин А.Ф. // Мол. биология. 2023. Т. 57. С. 925–937.
  8. 8. Sharma V., Fernando V.R., Letson J., Walia Y., Zheng X., Fackelman D., Furuta S. // Int. J. Mol. Sci. 2021. V. 22. P. 4600. https://doi.org/10.3390/ijms22094600
  9. 9. Soni Y., Softness K., Arora H., Ramasamy R. // Am. J. Mens. Health. 2020. V. 14. P. 1557988320903191. https://doi.org/10.1177/1557988320903191
  10. 10. Kamm A., Przychodzen P., Kuban-Jankowska A., Jacewicz D., Dabrowska A.M., Nussberger S., Wozniak M., Gorska-Ponikowska M. // Nitric Oxide. 2019. V. 93. P. 102–114. https://doi.org/10.1016/j.niox.2019.09.005
  11. 11. Mintz J., Vedenko A., Rosete O., Shah K., Goldstein G., Hare J.M., Ramasamy R., Arora H. // Vaccines (Basel). 2021. V. 9. P. 94. https://doi.org/10.3390/vaccines9020094
  12. 12. Andrabi S.M., Sharma N.S., Karan A., Shahriar S.M.S., Cordon B., Ma B., Xie J. // Adv. Sci. (Weinh). 2023. V. 10. P. e2303259. https://doi.org/10.1002/advs.202303259
  13. 13. Gao D., Asghar S., Hu R., Chen S., Niu R., Liu J., Chen Z., Xiao Y. // Acta. Pharm. Sin. B. 2023. V. 13. P. 1498–1521. https://doi.org/10.1016/j.apsb.2022.11.016
  14. 14. Huang W., Zhang J., Luo L., Yu Y., Sun T. // ACS Biomater. Sci. Eng. 2023. V. 9. P. 139–152. https://doi.org/10.1021/acsbiomaterials.2c01247
  15. 15. Alimoradi H., Greish K., Barzegar-Fallah A., Alshaibani L., Pittalà V. // Int. J. Nanomedicine. 2018. V. 20. P. 7771–7787. https://doi.org/10.2147/IJN.S187089
  16. 16. Ishima Y., Kragh-Hansen U., Maruyama T., Otagiri M. // Biomed. Res. Int. 2013. V. 2013. P. 353892. https://doi.org/10.1155/2013/353892
  17. 17. Sinha B.K. // Int. J. Mol. Sci. 2023. V. 24. P. 13611. https://doi.org/10.3390/ijms241713611
  18. 18. Zhao Z., Shan X., Zhang H., Shi X., Huang P., Sun J., He Z., Luo C., Zhang S. // J. Controll. Releas. 2023. V. 362. P. 151–169.
  19. 19. Kim J., Thomas S.N. // Pharmacol. Rev. 2022. V. 74. P. 1146–1175. https://doi.org/10.1124/pharmrev.121.000500
  20. 20. Stamler J.S., Jaraki O., Osborne J., Simon D.I., Keaney J., Vita J., Singel D., Valeri C.R., Loscalzo J. // Proc. Natl. Acad. Sci. USA. 1992. V. 89. P. 7674–7677. https://doi.org/10.1073/pnas.89.16.7674
  21. 21. Tsiountsioura M., Cvirn G., Schlagenhauf A., Haidl H., Zischmeier K., Janschitz N., Koestenberger M., Wonisch W., Paar M., Wagner T., Weiss E.C., Hallström S. // Biomedicines. 2022. V. 10. P. 649. https://doi.org/10.3390/biomedicines10030649
  22. 22. Rungatscher A., Hallstrom S., Linardi D., Milani E., Gasser H., Podesser B.K., Scarabelli T.M., Luciani G.B., Faggian G. // J. Heart Lung Transplant. 2015. V. 34. P. 479–488.
  23. 23. Hallstrom S., Franz M., Gasser H., Vodrazka M., Semsroth S., Losert U.M., Haisjackl M., Podesser B.K., Malinski T. // Cardiovasc. Res. 2008. V. 77. P. 506–514.
  24. 24. Hallstrom S., Gasser H., Neumayer C., Fugl A., Nanobashvili J., Jakubowski A., Huk I., Schlag G., Malinski T. // Circulation. 2002. V. 105. P. 3032–3038.
  25. 25. Enayati M., Schneider K.H., Almeria C., Grasl C., Kaun C., Messner B., Rohringer S., Walter I., Wojta J., Budinsky L., Walpoth B.H., Schima H., Kager G., Hallström S., Podesser B.K., Bergmeister H. // Acta Biomaterialia. 2021. V. 134. P. 276–288. https://doi.org/10.1016/j.actbio.2021.07.048
  26. 26. Schaefer A.-K., Kiss A., Oszwald A., Nagel F., Acar E., Aliabadi-Zuckermann A., Hackl M., Zuckermann A., Kain R., Jakubowski A., Ferdinandy P., Hallström S. // Transpl. Int. 2022. V. 35. P. 10057. https://doi.org/10.3389/ti.2022.10057
  27. 27. Ishima Y., Maruyama T., Otagiri M., Chuang V.T.G., Ishida T. // Chem. Pharm. Bull. (Tokyo). 2022. V. 70. P. 330–333. https://doi.org/10.1248/cpb.c21-01024
  28. 28. Ishima Y., Maruyama T., Otagiri M., Ishida T. // Chem. Pharm. Bull. 2020. V. 68. P. 583–588. https://doi.org/10.1248/cpb.c20-00026
  29. 29. Bihari S., Bannard-Smith J., Bellomo R. // Crit. Care Resusc. 2020. V. 22. P. 257–265. https://doi.org/10.1016/S1441-2772 (23)00394-0
  30. 30. Ishima Y. // Biol. Pharm. Bull. 2017. V. 40. P. 128–134. https://doi.org/10.1248/bpb.b16-00867
  31. 31. Maeda H. // J. Pers. Med. 2021. V. 11. P. 229.
  32. 32. Fang J. // J. Pers. Med. 2022. V. 12. P. 95.
  33. 33. Zi Y., Yang K., He J., Wu Z., Liu J., Zhang W. // Adv. Drug Deliv. Rev. 2022. V. 188. P. 114449.
  34. 34. Kim J., Cho H., Lim D.K., Joo M.K., Kim K. // Int. J. Mol. Sci. 2023. V. 24. P. 10082. https://doi.org/10.3390/ijms241210082
  35. 35. Subhan M.A., Parveen F., Filipczak N., Yalamarty S.S.K., Torchilin V.P. // J. Pers. Med. 2023. V. 13. P. 389. https://doi.org/10.3390/jpm13030389
  36. 36. Xu Y., Ren. H., Liu J., Wang Y., Meng Z., He Z., Miao W., Chen G., Li X. // Nanoscale. 2019. V. 11. P. 5474–5488.
  37. 37. Zhao Y., Ouyang X., Peng Y., Peng S. // Pharmaceutics. 2021. V. 13. P. 1917. https://doi.org/10.3390/pharmaceutics1311191
  38. 38. Ji P., Yang K., Xu Q., Qin G., Zhu Q., Qian Y., Yao W. // Pharmaceuticals (Basel). 2023. V. 16. P. 1394. https://doi.org/10.3390/ph16101394
  39. 39. Fan W., Bu W., Zhang Z., Shen B., Zhang H., He Q., Ni D., Cui Z., Zhao K., Bu J., Du J., Liu J., Shi J. // Angew. Chem. Int. Ed. Engl. 2015. V. 54. P. 14026– 14030. https://doi.org/10.1002/anie.201504536
  40. 40. Barth R.F., Zhang Z., Liu T. // Cancer Commun. 2018. V. 38. P. 36.
  41. 41. Иванов А.А., Смирнов А.Н., Таскаев С.Ю., Баянов Б.Ф., Бельченко Ю.И., Давыденко В.И., Дунаевский А., Емелев И.С., Касатов Д.А., Макаров А.Н., Микенс М., Куксанов Н.К., Попов С.С., Салимов Р.А., Санин А.Л., Сорокин И.Н., Сычева Т.В., Щудло И.М., Воробьев Д.С., Черепков В.Г., Фадеев С.Н. // Усп. физ. химии. 2022. Т. 192. С. 894– 912.
  42. 42. Popova T. V., Pyshnaya I.A., Zakharova O.D., Akulov A.E., Shevelev O.B., Poletaeva J., Zavjalov E.L., Silnikov V.N., Ryabchikova E.I., Godovikova T.S. // Biomedicines. 2021. V. 9. P. 1–15.
  43. 43. Peters T.J. // Adv. Protein Chem. 1985. V. 37. P. 161– 245.
  44. 44. Ishima Y., Hiroyama S., Kragh-Hansen U., Maruyama T., Sawa T., Akaike T., Kai T., Otagiri M. // Nitric Oxide. 2010. V. 23. P. 121–127.
  45. 45. Era H., Terada S., Minami T., Takahashi T., Arikawa T. // Heterogenity of Commercially Available Human Serum Albumin Products: Thiol Oxidation and Protein Carbonylation. 37th Congress of IUPS. Birmingham, UK, 2013.
  46. 46. Miyamura S., Imafuku T., Anraku M., Taguchi K., Yamasaki K., Tominaga Y., Maeda H., Ishima Y., Watanabe H., Otagiri M., Maruyama T. // J. Pharm. Sci. 2016. V. 105. P. 1043–1049.
  47. 47. Xu Y., Liu J., Liu Z., Chen G., Li X., Ren H. // Int. J. Nanomedicine. 2021. V. 16. P. 2597–2613. https://doi.org/10.2147/IJN.S295445
  48. 48. Ikeda M., Ishima Y., Chuang V.T.G., Ikeda T., Kinoshita R., Watanabe H., Ishida T., Otagiri M., Maruyama T. // Nitric Oxide. 2017. V. 69. P. 28–34. https://doi.org/10.1016/j.niox.2017.04.005
  49. 49. Lisitskiy V.A., Khan H., Popova T.V., Chubarov A.S., Zakharova O.D., Akulov A.E., Shevelev O.B., Zavjalov E.L., Koptyug I.V., Moshkin M.P., Silnikov V.N., Ahmad S., Godovikova T.S. // Bioorg. Med. Chem. Lett. 2017. V. 27. P. 3925–3930.
  50. 50. Popova T.V., Krumkacheva O.A., Burmakova A.S., Spitsyna A.S., Zakharova O.D., Lisitskiy V.A., Kirilyuk I.A., Silnikov V.N., Bowman M.K., Bagryanskaya E.G., Godovikova T.S. // RSC Medicinal Chemistry. 2020. V. 11. P. 1314–1325.
  51. 51. Raskolupova V.I., Wang M., Dymova M.A., Petrov G.O., Shchudlo I.M., Taskaev S.Y., Abramova T.V., Godovikova T.S., Silnikov V.N., Popova T.V. // Molecules. 2023. V. 28. P. 2672–2689.
  52. 52. Popova T.V., Dymova M.A., Koroleva L.S., Zakharova O.D., Lisitskiy V.A., Raskolupova V.I., Sycheva T.V., Taskaev S.Yu., Silnikov V.N., Godovikova T.S. // Molecules. 2021. V. 26. P. 6537–6553.
  53. 53. Popova T.V., Khan H., Chubarov A.S., Lisitskiy V.A., Antonova N.M., Akulov A.E., Shevelev O.B., Zavjalov E.L., Silnikov V.N., Ahmad S., Godovikova T.S. // Bioorg. Med. Chem. Lett. 2018. V. 28. P. 260–264. https://doi.org/10.1016/j.bmcl.2017.12.061
  54. 54. Kashiwagi H., Kawabata S., Yoshimura K., Fukuo Y., Kanemitsu T., Takeuchi K., Shiba H., Hiramatsu R., Nishimura K., Kawai K., Takata T., Tanaka H., Watanabe T., Suzuki M., Miyatake S.I., Nakamura H., Wanibuchi M. // Investigat. New Drugs. 2022. V. 40. P. 255–264.
  55. 55. Sivaev I.B., Kulikova N.Y., Nizhnik E.A., Vichuzhanin M.V., Starikova Z.A., Semioshkin A.A., Bregadze V.I. // J. Organomet. Chem. 2008. V. 693. P. 519– 525.
  56. 56. Semioshkin A., Nizhnik E., Godovikov I., Starikiva Z., Bregadze V. // J. Organomet. Chem. 2007. V. 692. P. 4020–4028.
  57. 57. Kikuchi S., Kanoh D., Sato S., Sakurai Y., Suzuki M., Nakamura H. // J. Control. Release. 2016. V. 237. P. 160–166.
  58. 58. Mosmann T. // J. Immunol. Methods. 1983. V. 65. P. 55–63.
  59. 59. Peters R.A. // In: Advances in Enzymology / Eds. Nord F.F. Interscience Publishers Inc., Geneva, Switzerland, 1957. P. 113–159.
  60. 60. Laemmli U.K. // Nature. 1970. V. 227. P. 680–685.
  61. 61. Terance W. // Tetrahedron Letters. 1985. V. 26. P. 2013– 2016.
  62. 62. Chubarov A.S., Zakharova O.D., Koval O.A., Romaschenko A.V., Akulov A.E., Zavjalov E.L., Razumov I.A., Koptyug I.V., Knorre D.G., Godovikova T.S. // Bioorg. Med. Chem. 2015. V. 23. P. 6943–6954.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library