RAS BiologyБиоорганическая химия Russian Journal of Bioorganic Chemistry

  • ISSN (Print) 0132-3423
  • ISSN (Online) 1998-2860

Construction of a Producer Strain of the Fibrinolitic Enzyme PAPC Based on Yeast

PII
S19982860S0132342325050235-1
DOI
10.7868/S1998286025050235
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 51 / Issue number 5
Pages
988-1000
Abstract
Yeast is widely used in food and pharmaceutical industries as microbial cell factories of recombinant proteins due to its ability to heterologously overexpress many target proteins, including proteolytic enzymes. Protease-activator of protein C (PAPC) of blood plasma from micromycete VKM F-4104D can potentially be introduced into therapeutic practice as a fibrinolytic drug and into diagnostic systems for blood coagulation analysis as the main component that activates protein C. To solve problems of using protease-activator of protein C in medicine and veterinary science, it is important to have a reliable system to produce the recombinant enzyme. Such a production system can be created on the basis of yeast. The aim of this work was to construct a PAPC-producing strain based on and to demonstrate effective production and secretion of the recombinant enzyme into the culture fluid. We assembled a vector carrying the gene. This vector was used to transform yeast, and transformants were selected on a zeocin-containing medium. The clones most effectively producing the target enzyme were selected using agar medium with casein and analysis of the culture fluid by SDS-PAGE. The dynamics of accumulation of the active form of PAPC in the culture fluid after induction of protein synthesis during submerged cultivation of the producing clone in a flask was studied. LC-MS analysis confirmed the presence of the enzyme in the culture medium and demonstrated that accumulation occurs in the mature active form. The obtained strain can be used for further production of experimental industrial batches of the enzyme in biotechnological production facilities that support yeast fermentation.
Keywords
PAPC дрожжевая экспрессия Array
Date of publication
01.05.2025
Year of publication
2025
Number of purchasers
0
Views
5

References

  1. 1. Banerjee G., Ray A.K. // Biotechnol. Genet. Eng. Rev. 2017. V. 33. P. 119–143. https://doi.org/10.1080/02648725.2017.1408256
  2. 2. Frolova A.S., Chepikova O.E., Deviataikina A.S., Solonkina A.D., Zamyatnin A.A. // Biology (Basel). 2023. V. 12. P. 797. https://doi.org/10.3390/biology12060797
  3. 3. Jabalia N., Chaudhary N. // GSTF J. BioSci. 2015. V. 3. P. 15–19. https://doi.org/10.7603/s40835-014-0005-8
  4. 4. Zhang Y., Huang H., Yao X., Du G., Chen J., Kang Z. // Bioresour. Technol. 2017. V. 247. P. 81–87. https://doi.org/10.1016/j.biortech.2017.08.006
  5. 5. Ramirez-Larrota J.S., Eckhard U. // Biomolecules. 2022. V. 12. P. 1–19. https://doi.org/10.3390/biom12020306
  6. 6. Osmolovskiy A.A., Kreyer V.G., Baranova N.A., Kurakov A.V., Egorov N.S. // Appl. Biochem. Microbiol. 2013. V. 49. P. 581–586. https://doi.org/10.1134/S0003683813060148
  7. 7. Osmolovskiy A.A., Kreyer V.G., Kurakov A.V., Baranova N.A., Egorov N.S. // Appl. Biochem. Microbiol. 2012. V. 48. P. 488–492. https://doi.org/10.1134/S0003683812050109
  8. 8. Bouwens E.A., Stavenuiter F., Mosnier L.O. // J. Thromb. Haemost. 2013. V. 11. P. 242–253. https://doi.org/10.1111/jth.12247
  9. 9. Mohammed S., Favaloro E.J. // Methods Mol. Biol. 2017. V. 1646. P. 137–143. https://doi.org/10.1007/978-1-4939-7196-1_10
  10. 10. Gempeler-Messina P.M., Volz K., Buhler B., Muller C. // Haemostasis. 2001. V. 31. P. 266–272. https://doi.org/10.1159/000048072
  11. 11. Osmolovskiy A.A., Orekhova A.V., Kreyer V.G., Baranova N.A., Egorov N.S. // Biomed. Khim. 2018. V. 64. P. 115–118. https://doi.org/10.18097/PBMC20186401115
  12. 12. Nasr A.R., Komarevtsev S.K., Baidamshina D.R., Ryskulova A.B., Makarov D.A., Stepanenko V.N., Trizna E.Y., Gorshkova A.S., Osmolovskiy A.A., Miroshnikov K.A., Kayumov A.R. // Biochimie. 2025. V. 230. P. 33–42. https://doi.org/10.1016/j.biochi.2024.11.002
  13. 13. Komarevtsev S.K., Evseev P.V., Shneider M.M., Popova E.A., Tupikin A.E., Stepanenko V.N., Kabilov M.R., Shabunin S.V., Osmolovskiy A.A., Miroshnikov K.A. // Microorganisms. 2021. V. 9. P. 1–13. https://doi.org/10.3390/microorganisms9091936
  14. 14. Komarevtsev S.K., Popova E.A., Kreyer V.G., Miroshnikov K.A., Osmolovskiy A.A. // Appl. Biochem. Microbiol. 2020. V. 56. P. 32–36. https://doi.org/10.1134/S0003683820010093
  15. 15. Pan Y., Yang J., Wu J., Yang L., Fang H. // Front. Microbiol. 2022. V. 13. P. 1059777. https://doi.org/10.3389/fmicb.2022.1059777
  16. 16. Zhang Q., Wang X., Luo H., Wang Y., Tu T., Qin X., Su X., Huang H., Yao B., Bai Y., Zhang J. // Microb. Cell Fact. 2022. V. 21. P. 112. https://doi.org/10.1186/s12934-022-01837-x
  17. 17. Marillonnet S., Grutzner R. // Curr. Protoc. Mol. Biol. 2020. V. 130. P. 115. https://doi.org/10.1002/cpmb.115
  18. 18. Sambrook J., Fritsch E.F., Maniatis T. // Molecular Cloning. A Laboratory Manual. 2nd Ed. / Ed. Nolan C. New York: Cold Spring Harbor Laboratory Press, 1989.
  19. 19. Lin-Cereghino J., Wong W.W., Xiong S., Giang W., Luong L.T., Vu J., Johnson S.D., Lin-Cereghino G.P. // Biotechniques. 2005. V. 38. P. 44–48. https://doi.org/10.2144/05381BM04
  20. 20. Schagger H. // Nat. Protoc. 2006. V. 1. P. 16–22. https://doi.org/10.1038/nprot.2006.4
  21. 21. Looke M., Kristjuhan K., Kristjuhan A. // Biotechniques. 2011. V. 50. P. 325–328. https://doi.org/10.2144/000113672
  22. 22. Shevchenko A., Tomas H., Havlis J., Olsen J.V., Mann M. // Nat. Protoc. 2006. V. 1. P. 2856–2860. https://doi.org/10.1038/nprot.2006.468
  23. 23. Rappsilber J., Mann M., Ishihama Y. // Nat. Protoc. 2007. V. 2. P. 1896–1906. https://doi.org/10.1038/nprot.2007.261
  24. 24. Ma B., Zhang K., Hendrie C., Liang C., Li M., Doherty-Kirby A., Lajoie G. // Rapid Commun. Mass Spectrom. 2003. V. 17. P. 2337–2342. https://doi.org/10.1002/rcm.1196
  25. 25. Anson M.L. // Science. 1935. V. 81. P. 467–468. https://doi.org/10.1126/science.81.2106.467
  26. 26. Hagihara B., Matsubara H., Nakai M., Okunuki K. // J. Biochem. 1958. V. 45. P. 185–194. https://doi.org/10.1093/oxfordjournals.jbchem.a126856
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library