- PII
- S19982860S0132342325050222-1
- DOI
- 10.7868/S1998286025050222
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 51 / Issue number 5
- Pages
- 979-987
- Abstract
- Conventional and multifunctional cationic liposomes that efficiently deliver plasmid DNA (pDNA) were obtained. Partial inhibition of receptor-mediated endocytosis of pDNA complexes with multifunctional cationic liposomes containing folate lipids was shown in the presence of free folic acid in the cellular medium. Additional formation of pDNA complexes with the nuclear localization signal (NLS) peptide allowed increasing the efficiency of green fluorescent protein expression by 1.5–2 times using conventional and multifunctional cationic liposomes. Addition of the NLS peptide to pDNA and subsequent formation of complexes with cationic liposomes can be used to solve the problem of efficient pDNA delivery into eukaryotic cells.
- Keywords
- мультифункциональные катионные липосомы ПЭГ-липид фолатный липид пептид NLS пДНК фолиевая кислота
- Date of publication
- 01.05.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 6
References
- 1. Scalzo S., Santos A.K., Ferreira H.A.S., Costa P.A., Prazeres P.H.D.M., da Silva N.J.A., Guimarães L.C., E Silva M.M., Rodrigues Alves M.T.R., Viana C.T.R., Jesus I.C.G., Rodrigues A.P., Birbrair A., Lobo A.O., Frezard F., Mitchell M.J., Guatimosim S., Guimaraes P.P.G. // Int. J. Nanomedicine. 2022. V. 17. P. 2865–2881. https://doi.org/10.2147/IJN.S366962
- 2. Prazeres P.H.D.M., Ferreira H., Costa P.A.C., da Silva W., Alves M.T., Padilla M., Thatte A., Santos A.K., Lobo A.O., Sabino A., Del Puerto H.L., Mitchell M.J., Guimaraes P.P.G. // Int. J. Nanomedicine. 2023. V. 18. P. 5891–5904. https://doi.org/10.2147/IJN.S424723
- 3. Lu B., Lim J.M., Yu B., Song S., Neeli P., Sobhani N.K.P., Bonam S.R., Kurapati R., Zheng J., Chai D. // Front. Immunol. 2024. V. 15. P. 1–24. https://doi.org/10.3389/fimmu.2024.1332939
- 4. Baghban R., Ghasemian A., Mahmoodi S. // Arch. Microbiol. 2023. V. 205. P. 1–15. https://doi.org/10.1007/s00203-023-03480-5
- 5. Lim M., Badruddoza A.Z.M., Firdous J., Azad M., Mannan A., Al-Hilal T.A., Cho C.S., Islam M.A. // Pharmaceutics. 2020. V. 12. P. 1–29. https://doi.org/10.3390/pharmaceutics12010030
- 6. Durymanov M., Reineke J. // Front. Pharmacol. 2018. V. 9. P. 1–15. https://doi.org/10.3389/fphar.2018.00971
- 7. Amoako K., Mokhammad A., Malik A., Yesudasan S., Wheba A., Olagunju O., Gu S.X., Yarovinsky T., Faustino E.V.S., Nguyen J., Hwa J. // Front. Med. Technol. 2025. V. 7. P. 1591119. https://doi.org/10.3389/fmedt.2025.1591119.
- 8. Xu E., Saltzman W.M., Piotrowski-Daspit A.S. // J. Control. Release. 2021. V. 335. P. 465–480. https://doi.org/10.1016/j.jconrel.2021.05.038
- 9. Cheng X., Lee R.J. // Adv. Drug Deliv. Rev. 2016. V. 99. P. 129–137. https://doi.org/10.1016/j.addr.2016.01.022
- 10. Kabilova T.O., Shmendel E.V., Gladkikh D.V., Chernolovskaya E.L., Markov O.V., Morozova N.G., Maslov M.A., Zenkova M.A. // Eur. J. Pharm. Biopharm. 2018. V. 123. P. 59–70. https://doi.org/10.1016/j.ejpb.2017.11.010
- 11. Dilliard S.A., Siegwart D.J. // Nat. Rev. Mater. 2023. V. 8. P. 282–300. https://doi.org/10.1038/s41578-022-00529-7
- 12. Lin D.H., Hoelz A. // Annu. Rev. Biochem. 2019. V. 88. P. 725–783. https://doi.org/10.1146/annurev-biochem-062917-011901
- 13. Губанова Н.В., Морозова К.Н., Киселева Е.В. // Цитология. 2006. V. 11. P. 887–899.
- 14. Roy S.M., Garg V., Sivaraman S.P., Barman S., Ghosh C., Bag P., Mohanasundaram P., Maji P.S., Basu A., Dirisala A., Ghosh S.K., Maitymit R. // J. Drug Deliv. Sci. Technol. 2023. V. 83. P. 104408. https://doi.org/10.1016/j.jddst.2023.104408
- 15. Yao J., Fan Y., Li Y., Huang L. // J. Drug Target. 2013. V. 21. P. 926–939. https://doi.org/10.3109/1061186X.2013.830310
- 16. Fontes M.R.M., Teh T., Kobe B. // J. Mol. Biol. 2000. V. 297. P. 1183–1194. https://doi.org/10.1006/jmbi.2000.3642
- 17. Mashal M., Attia N., Maldonado I., Enríquez Rodríguez L., Gallego I., Puras G., Pedraz J.L. // Eur. J. Pharm. Biopharm. 2024. V. 201. P. 114385. https://doi.org/10.1016/j.ejpb.2024.114385
- 18. Kurihara D., Akita H., Kudo A., Masuda T., Futaki S., Harashima H. // Biol. Pharm. Bull. 2009. V. 32. P. 1303–1306. https://doi.org/10.1248/bpb.32.1303
- 19. Nematollahi M.H., Torkzadeh-Mahanai M., Pardakhty A., EbrahimiMeimand H.A., Asadikaram G. // Artif. Cells Nanomed. Biotechnol. 2018. V. 46. P. 1781–1791. https://doi.org/10.1080/21691401.2017.1392316
- 20. Bishani A., Makarova D.M., Shmendel E.V., Maslov M.A., Sen’kova A.V., Savin I.A., Gladkikh D.V., Zenkova M.A., Chernolovskaya E.L. // Pharmaceutics. 2023. V. 15. P. 92184. https://doi.org/10.3390/pharmaceutics15092184
- 21. Shmendel E.V., Bakhareva S.A., Makarova D.M., Chernikov I.V., Morozova N.G., Chernolovskaya E.L., Zenkova M.A., Maslov M.A. // Russ. J. Bioorg. Chem. 2020. V. 46. P. 1250–1260. https://doi.org/10.1134/S106816202006031X
- 22. Mornet E., Carmoy N., Lainé C., Lemiègre L., Le Gall T., Laurent I., Marianowski R., Férec C., Lehn P., Benvegnu T., Montier T. // Int. J. Mol. Sci. 2013. V. 14. P. 1477–1501. https://doi.org/10.3390/ijms14011477
- 23. Wang S., Lee R.J., Cauchon G., Gorensteint D.G., Lowt P.S. // Proc. Natl. Acad. Sci. USA. 1995. V. 92. P. 3318–3322
- 24. Xu Z., Jin J., Siu L.K.S., Yao H., Sze J., Sun H., Kung H., Poon W.S., Ng S.S.M., Lin M.C. // Int. J. Pharm. 2012. V. 426. P. 182–192. https://doi.org/10.1016/j.ijpharm.2012.01.009
- 25. Jones S.K., Sarkar A., Feldmann D.P., Hoffmann P., Merkel O.M. // Biomaterials. 2017. V. 138. P. 35–45. https://doi.org/10.1016/j.biomaterials.2017.05.034
- 26. van der Aa M.A.E.M., Koning G.A., d’Oliveira C., Oosting R.S., Wilschut K.J., Hennink W.E., Crommelin D.J.A. // J. Gene Med. 2005. V. 7. P. 208–217. https://doi.org/10.1002/jgm.643