- PII
- S19982860S0132342325050193-1
- DOI
- 10.7868/S1998286025050193
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 51 / Issue number 5
- Pages
- 940-952
- Abstract
- It is known that even a short-term high-fat diet has a negative effect on the metabolic health of the organism. However, under the influence of diet, first of all, the intestinal microbiota undergoes changes. The type of diet, dietary supplements and drugs affect both the taxonomic diversity of the microbiota and its functional state. It is known that with the participation of the intestinal microbiota, tryptophan is converted into indole and its various derivatives. The leading role of indoles in the regulation of the expression of tight junction proteins, and accordingly the regulation of intestinal permeability, has also been established. The aim of our study was to assess the effect of indole-3-acetate on the taxonomic diversity of the microbiota of the small and large intestines, as well as to establish the potential prebiotic value of this indole derivative under conditions of short-term use of a high-fat diet. C57/black6 SPF mice aged 4-5 weeks (n=60, females) were randomly divided into six groups. A high-fat diet was achieved by feeding laboratory animals a high-fat diet of animal origin, providing up to 30% of the total calories. Indole-3-acetate was administered together with a standard or high-fat diet via an atraumatic intragastric tube at a single dose of 0.1392 mg per mouse for 28 days. In our study, we showed for the first time that in C57/black6 SPF mice on a short-term high-fat diet, indole-3-acetate increases the representation of in the microbial community of both the small intestine and the colon. Whereas, the increase in was only in the microbial community of the colon. Indole-3-acetate intake provides normoglycemia in animals on a short-term high-fat diet. The use of indole-3-acetate in various metabolic diseases associated with high-fat diet and dysbacteriosis may be a promising therapeutic approach to correct metabolic disorders through modulation of the microbiotic community.
- Keywords
- Триптофан индол индол-3-ацетат микробиота кишечника Bifidobacterium pseudolongum Akkermansia muciniphila
- Date of publication
- 01.05.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 4
References
- 1. Shen J., Yang L., You K., Chen T., Su Z., Cui Z., Wang M., Zhang W., Liu B., Zhou K., Lu H. // Front Immunol. 2022. V. 13. P. 762580. https://doi.org/10.3389/fimmu.2022.762580
- 2. Liang H., Dai Z., Liu N., Ji Y., Chen J., Zhang Y., Yang Y., Li J., Wu Z., Wu G. // Front Microbiol. 2018. V. 9. P. 1736. https://doi.org/10.3389/fmicb.2018.01736
- 3. Zhang Q., Zhao Q., Li T., Lu L., Wang F., Zhang H., Liu Z., Ma H., Zhu Q., Wang J., Zhang X., Pei Y., Liu Q., Xu Y., Qie J., Luan X., Hu Z., Liu X. // Cell Metab. 2023. V. 35. P. 943–960. https://doi.org/10.1016/j.cmet.2023.04.015
- 4. Shatova O. P., Shestopalov A. V. // Biology Bulletin Rev. 2023. V. 13. P. 81–91. https://doi.org/ 10.1134/s2079086423020068
- 5. Vaga S., Lee S., Ji B., Andreasson A., Talley N.J., Agréus L., Bidkhori G., Kovatcheva-Datchary P., Park J., Lee D., Proctor G., Ehrlich S.D., Nielsen J., Engstrand L., Shoaie S. // Sci Rep. 2020. V. 10. P. 14977. https://doi.org/ 10.1038/s41598-020-71939-2
- 6. Kumar A., Sperandio V. // MBio. 2019. V. 10. P. e03318-19. https://doi.org/ 10.1128/mBio.01031-19
- 7. Lee H., Lee Y., Kim J., An J., Lee S., Kong H., Song Y., Lee C.K., Kim K. // Gut Microbes. 2018. V. 9. P. 155–165. https://doi.org/ 10.1080/19490976.2017.1405209
- 8. Ding Y, Yanagi K, Yang F., Callaway E., Cheng C., Hensel M.E., Menon R., Alaniz R.C., Lee K., Jayaraman A. // Elife. 2024. V. 13. P. 87458. https://doi.org/ 10.7554/eLife.87458
- 9. Kumar A., Sperandio V. // mBio. 2020. V. 10. P. e03318-19. https://doi.org/ 10.1128/mBio.03318-19
- 10. Krishnan S., Ding Y., Saeidi N., Choi M., Sridharan G.V., Sherr D.H., Yarmush M.L., Alaniz R.C., Jayaraman A., Lee K. // Cell Reports. 2019. V. 23. P. 1099–1111. https://doi.org/10.1016/j.celrep.2019.08.080
- 11. Silva Y. P., Bernardi A., Frozza R. L. // Front Endocrinol (Lausanne). 2020. V. 11. P. 25. https://doi.org/10.3389/fendo.2020.00025
- 12. Yao Y., Liu Y., Xu Q., Mao L. // Molecules. 2024. V. 29. P. 379. https://doi.org/10.3390/molecules29020379
- 13. Coutinho W., Halpern B. // Diabetol Metab Syndr. 2024. V. 16. P. 6. https://doi.org/10.1186/s13098-023-01233-4
- 14. Dapa T., Ramiro R.S., Pedro M.F., Gordo I., Xavier K.B. // Cell Host Microbe. 2022. V. 30. P. 183–199. https://doi.org/10.1016/j.chom.2022.01.002
- 15. Contreras-Rodriguez O., Arnoriaga-Rodríguez M., Miranda-Olivos R., Blasco G., Biarnés C., Puig J., Rivera-Pinto J., Calle M.L., Pérez-Brocal V., Moya A., Coll C., Ramió-Torrentà L., Soriano-Mas C., Fernandez-Real J.M. // Int J Obes. 2022. V. 46. P. 30–38. https://doi.org/10.1038/s41366-021-00953-9
- 16. Шестопалов А.В., Кроленко Е.В., Недорубов А.А., Борисенко О.В., Попруга К.Э., Макаров В.В., Юдин С.М., Гапонов А.М., Румянцев С.А. // Бюлл. эксперимент. биол. и мед. 2024. Т. 178. С. 256–264. https://doi.org/10.47056/0365-9615-2024-178-8-256-264
- 17. Lee J., Kim M.J., Moon S., Lim J.Y., Park K.S., Jung H.S. // Endocrinol. Metabolism. 2023. V. 38. P. 782–787. https://doi.org/10.3803/EnM.2023.1738
- 18. Prudencio A.P., Machado N.M., Fonseca D.C. // Clin. Nutr. ESPEN. 2021. V. 46. P. S552. https://doi.org/10.1016/j.clnesp.2021.09.035
- 19. Zou Y., Zhao P., Axmacher J. C. // Ecosphere. 2023. V. 14. P. 4363. https://doi.org/10.1002/ecs2.4363
- 20. Jian H., Liu Y., Wang X., Dong X., Zou X. // Int. J. Mol. Sci. 2023. V. 24. P. 3900. https://doi.org/10.3390/ijms24043900
- 21. van der Lugt B., van Beek A.A., Aalvink S., Meijer B., Sovran B., Vermeij W.P., Brandt R.M.C., de Vos W.M., Savelkoul H.F.J., Steegenga W.T., Belzer C. // Immun. Ageing. 2019. V. 16. P. 6. https://doi.org/10.1186/s12979-019-0145-z
- 22. Hasani A., Ebrahimzadeh S., Hemmati F., Khabbaz A., Hasani A., Gholizadeh P. // J. Med. Microbiol. 2021. V. 70. P. 10. https://doi.org/10.1099/jmm.0.001435
- 23. Rodrigues V.F., Elias-Oliveira J., Pereira Í.S., Pereira J.A., Barbosa S.C., Machado M.S.G., Carlos D. // Front Immunol. 2022. V. 13. P. 934695. https://doi.org/10.3389/fimmu.2022.934695
- 24. Hou X., Zhang P., Du H., Chu W., Sun R., Qin S., Tian Y., Zhang Z., Xu F. // Front Pharmacol. 2021. V. 12. P. 725583. https://doi.org/10.3389/fphar.2021.725583
- 25. Gubernatorova E.O., Gorshkova E.A., Bondareva M.A., Podosokorskaya O.A., Sheynova A.D., Yakovleva A.S., Bonch-Osmolovskaya E.A., Nedospasov S.A., Kruglov A.A., Drutskaya M.S. // Front Immunol. 2023. V. 14. P. 1303795. https://doi.org/10.3389/fimmu.2023.1303795
- 26. Cani P.D., Depommier C., Derrien M., Everard A., de Vos Willem M. // Nat. Rev. Gastroenterol. Hepatol. 2022. V. 19. P. 625-637. https://doi.org/10.1038/s41575-022-00631-9
- 27. https://docs.cntd.ru/document/901909691/titles/7EA0KF
- 28. https://www.fgu.ru/upload/iblock/f5a/fkamlebvdpt6ic91d37ole41wxd06qe5.pdf
- 29. Shaheen N., Miao J., Xia B., Zhao Y., Zhao J. // FASEB J. 2025. V. 15. P. 70574. P. https://doi.org/10.1096/fj.202500295R
- 30. Martinez-Guryn K., Hubert N., Frazier K., Urlass S., Musch M.W., Ojeda P., Pierre J.F., Miyoshi J., Sontag T.J., Cham C.M., Reardon C.A., Leone V., Chang E.B. // Cell. Host. Microbe. 2018. V. 23. P. 458–469. https://doi.org/10.1016/j.chom.2018.03.011
- 31. Bolyen Evan, Rideout Jai Ram, Dillon Matthew R. // Nat. Biotechnol. 2019. V. 37, P. 852–857. https://doi.org/10.1038/s41587-019-0252-6