- PII
- S19982860S0132342325050114-1
- DOI
- 10.7868/S1998286025050114
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 51 / Issue number 5
- Pages
- 863-872
- Abstract
- There is limited data in the scientific literature regarding the relationship between mechanotransduction associated with changes in Zyxin levels and biochemical signaling of the transcription factor YAP. Research in this area suggests that stress-induced reorganization of the actin cytoskeleton mediated by Zyxin may play a key role in YAP's mechanotransduction. However, the results of these studies do not provide clear outcomes concerning the effect of Zyxin on YAP distribution between the nucleus and the cytoplasm and its activity regulation. Here, we investigated the effects of Zyxin on the nuclear translocation of the Hippo-signaling pathway effector, YAP, in the early embryo of the clawed frog . Analysis of the nuclear-cytoplasmic distribution of YAP by immunoblotting and immunohistochemical staining, combined with the suppression of translation of endogenous Zyxin mRNA by morpholino antisense oligonucleotides and overexpression of synthetic Zyxin mRNA, revealed a stimulatory effect of Zyxin on the nuclear translocation of YAP in gastrula-stage embryos, but not in blastula and neurula stages. A similar conclusion was reached by analyzing the effect of the same changes in Zyxin concentration on the expression of a YAP-dependent luciferase reporter. Based on the results of our study, and taking into account the known role of Zyxin as one of the mechanotransducers, it can be assumed that this protein is involved in the mechano-dependent regulation of the Hippo signaling pathway in embryonic development at the gastrulation stage.
- Keywords
- морфогенез зиксин YAP механотрансдукция Xenopus laevis
- Date of publication
- 01.05.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 5
References
- 1. Suchyna T., Sachs F. // J. Physiol. Lond. 2007. V. 581. P. 369–387. https://doi.org/10.1113/jphysiol.2006.125021
- 2. Matheson L.A., Maksym G.N., Santerre J.P., Labow R.S. // J. Biomed. Mater. Res. A. 2006. V. 76. P. 52–62. https://doi.org/10.1002/jbm.a.30448
- 3. Huang C. // Clin. Exp. Hypertens. 2014. V. 2. P. 1009.
- 4. Delmas P. // Cell. 2004. V. 118. P. 145–148. https://doi.org/10.1016/j.cell.2004.07.007
- 5. Hirata H., Tatsumi H., Sokabe M. // J. Cell Sci. 2008. V. 121. P. 2795–2804. https://doi.org/10.1242/jcs.030320
- 6. Wang Y., Gilmore T.D. // Biochim. Biophys. Acta. 2003. V. 1593. P. 115–120. https://doi.org/10.1016/s0167-4889 (02)00349-x
- 7. Yoshigi M., Hoffman L.M., Jensen C.C., Yost H.J., Beckerle M.C. // J. Cell Biol. 2005. V. 171. P. 209–215. https://doi.org/10.1083/jcb.200505018
- 8. Ngu H., Feng Y., Lu L., Oswald S.J., Longmore G.D., Yin F.C. // Ann. Biomed. Eng. 2010. V. 38. P. 208–222. https://doi.org/10.1007/s10439-009-9826-7
- 9. Janmey P.A., Fletcher D.A., Reinhart-King C.A. // Physiol. Rev. 2020. V. 100. P. 695–724. https://doi.org/10.1152/physrev.00013.2019
- 10. Piccolo S., Dupont S., Cordenonsi M. // Physiol. Rev. 2014. V. 94. P. 1287–1312. https://doi.org/10.1152/physrev.00005.2014
- 11. Janmey P.A., Wells R.G., Assoian R.K., McCulloch C.A. // Differentiation. 2013. V. 86. P. 112–120. https://doi.org/10.1016/j.diff.2013.07.004
- 12. Mohri Z., Del Rio Hernandez A., Krams R. // J. Thorac. Dis. 2017. V. 9. P. E507–E509. https://doi.org/10.21037/jtd.2017.03.179
- 13. Basu S., Totty N.F., Irwin M.S., Sudol M., Downward J. // Mol. Cell. 2003. V. 11. P. 11–23. https://doi.org/10.1016/s1097-2765 (02)00776-1
- 14. Dupont S., Morsut L., Aragona M., Enzo E., Giulitti S., Cordenonsi M., Zanconato F., Le Digabel J., Forcato M., Bicciato S., Elvassore N., Piccolo S. // Nature. 2011. V. 474. P. 179–183. https://doi.org/10.1038/nature10137
- 15. Yu F.X., Zhao B., Panupinthu N., Jewell J.L., Lian I., Wang L.H., Zhao J., Yuan H., Tumaneng K., Li H., Fu X.D., Mills G.B., Guan K.L. // Cell. 2012. V. 150. P. 780–791. https://doi.org/10.1016/j.cell.2024.02.007
- 16. Ma B., Cheng H., Gao R., Mu C., Chen L., Wu S., Chen Q., Zhu Y. // Nat. Commun. 2016. V. 7. P. 11123. https://doi.org/10.1038/ncomms11123
- 17. Zhou J., Zeng Y., Cui L., Chen X., Stauffer S., Wang Z., Yu F., Lele S.M., Talmon G.A., Black A.R., Chen Y., Dong J. // Proc. Natl. Acad. Sci. USA. 2018. V. 115. P. E6760–E6769. https://doi.org/10.1073/pnas.1800621115
- 18. Gaspar P., Holder M.V., Aerne B.L., Janody F., Tapon N. // Curr. Biol. 2015. V. 25. P. 679–689. https://doi.org/10.1016/j.cub.2015.01.010
- 19. Aragona M., Panciera T., Manfrin A., Giulitti S., Michielin F., Elvassore N., Dupont S., Piccolo S. // Cell. 2013. V. 154. P. 1047–1059. https://doi.org/10.1016/j.cell.2013.07.042
- 20. Wen S.M., Wen W.C., Chao P.G. // Acta Biomater. 2022. V. 152. P. 313–320. https://doi.org/10.1016/j.actbio.2022.08.079
- 21. Zhang S., Chong L.H., Woon J.Y.X., Chua T.X., Cheruba E., Yip A.K., Li H.Y., Chiam K.H., Koh C.G. // Commun. Biol. 2023. V. 6. P. 62. https://doi.org/10.1038/s42003-023-04421-0
- 22. Parshina E.A., Eroshkin F.M., Orlov E.E., Gyoeva F.K., Shokhina A.G., Staroverov D.B., Belousov V.V., Zhigalova N.A., Prokhortchouk E.B., Zaraisky A.G., Martynova N.Y. // Cell Rep. 2020. V. 33. P. 108396. https://doi.org/10.1016/j.celrep.2020.108396
- 23. Harland R., Gerhart J. // Annu. Rev. Cell Dev. Biol. 1997. V. 13. P. 611–667. https://doi.org/10.1146/annurev.cellbio.13.1.611
- 24. Nelson C.M. // Annu. Rev. Biomed. Eng. 2022. V. 24. P. 307–322. https://doi.org/10.1146/annurev-bioeng-060418-052527
- 25. Concha M.L., Adams R.J. // Development. 1998. V. 125. P. 983–994. https://doi.org/10.1242/dev.125.6.983
- 26. Huang Y., Winklbauer R. // Wiley Interdiscip. Rev. Dev. Biol. 2018. V. 7. P. e325. https://doi.org/10.1002/wdev.325
- 27. Moon L.D., Xiong F. // Semin. Cell Dev. Biol. 2022. V. 130. P. 56–69. https://doi.org/10.1016/j.semcdb.2021.09.009
- 28. Inoue Y., Suzuki M., Watanabe T., Yasue N., Tateo I., Adachi T., Ueno N. // Biomech. Model. Mechanobiol. 2016. V. 15. P. 1733–1746. https://doi.org/10.1007/s10237-016-0794-1
- 29. Scobeyeva V.A. // Int. J. Dev. Biol. 2006. V. 50. P. 315–322. https://doi.org/10.1387/ijdb.052062vs
- 30. Feroze R., Shawky J.H., von Dassow M., Davidson L.A. // Dev. Biol. 2015. V. 398. P. 57–67. https://doi.org/10.1016/j.ydbio.2014.11.011
- 31. Martynova N.Y., Parshina E.A., Zaraisky A.G. // STAR Protoc. 2021. V. 2. P. 100552. https://doi.org/10.1016/j.xpro.2021.100552
- 32. Cheng Y., Mao M., Lu Y. // Biomark. Res. 2022. V. 10. P. 34. https://doi.org/10.1186/s40364-022-00365-5
- 33. Martynova N.Y., Eroshkin F.M., Ermolina L.V., Ermakova G.V., Korotaeva A.L., Smurova K.M., Gyoeva F.K., Zaraisky A.G. // Dev. Dyn. 2008. V. 237. P. 736–749. https://doi.org/10.1002/dvdy.21471
- 34. Ivanova E.D., Parshina E.A., Zaraisky A.G., Martynova N.Y. // Russ. J. Bioorg. Chem. 2024. V. 50. P. 723–732. https://doi.org/10.1134/s1068162024030026