RAS BiologyБиоорганическая химия Russian Journal of Bioorganic Chemistry

  • ISSN (Print) 0132-3423
  • ISSN (Online) 1998-2860

8-Oxo-2'-deoxyguanosine – Oxidative Stress Control

PII
S19982860S0132342325050061-1
DOI
10.7868/S1998286025050061
Publication type
Review
Status
Published
Authors
Volume/ Edition
Volume 51 / Issue number 5
Pages
812-819
Abstract
8-Oxo-2'-deoxyguanosine is a well-known marker of oxidative stress. Research over the past decade suggests that this compound is probably not a byproduct of oxidative DNA damage, but an important bioregulator driving the cellular response to stress. This review collected and analyzed data on the participation of 8-oxo-2'-deoxyguanosine in the processes of mutagenesis, DNA repair and regulation of gene expression, inflammatory responses, adaptive response to stress, apoptosis and cell transformation. Particular attention is paid to the potential of 8-oxo-2'-deoxyguanosine as a therapeutic agent for inflammatory, autoimmune, degenerative and oncological diseases, as well as traumatic and toxic injuries.
Keywords
8-оксо-2'-дезоксигуанозин окислительный стресс репарация ДНК
Date of publication
01.05.2025
Year of publication
2025
Number of purchasers
0
Views
5

References

  1. 1. Li P., Ramm G.A., Macdonald G.A. // Redox Biol. 2016. V. 8. P. 259–270. https://doi.org/10.1016/j.redox.2016.02.003
  2. 2. Tsukahara H., Shibata R., Ohshima Y., Todoroki Y., Sato S., Ohta N., Hiraoka M., Yoshida A., Nishima S., Mayumi M. // Life Sci. 2003. V. 72. P. 2509– 2516. https://doi.org/10.1016/s0024-3205 (03)00145-0
  3. 3. Di Minno A., Turnu L., Porro B., Squellerio I., Cavalca V., Tremoli E., Di Minno M.N. // Antioxid Redox Signal. 2016. V. 24. P. 548–555. https://doi.org/10.1089/ars.2015.6508
  4. 4. Lowe F.J., Luettich K., Gregg E.O. // Biomarkers Rev. 2013. V. 18. P. 183–195. https://doi.org/10.3109/1354750X.2013.777116
  5. 5. Kirkpatrick M., Benoit J., Everett W., Gibson J., Rist M., Fredette N. // Neurotoxicology. 2015. V. 50. P. 170–178. https://doi.org/10.1016/j.neuro.2015.07.001
  6. 6. Huang Y.K., Lin C.W., Chang C.C., Chen P.F., Wang C.J., Hsueh Y.M., Chiang H.C. // Eur. J. Appl. Physiol. 2012. V. 112. P. 4119–4126. https://doi.org/10.1007/s00421-012-2401-1
  7. 7. Escobar J., Teramo K., Stefanovic V., Andersson S., Asensi M.A., Arduini A., Cubells E., Sastre J., Vento M. // Neonatology. 2013. V. 103. P. 193–198. https://doi.org/10.1159/000345194
  8. 8. Есипов Д.С., Сидоренко Е.В., Есипова О.В., Горбачева Т.А., Невредимова Т.С., Крушинский А.Л., Кузенков В.С., Реутов В.П. // Вестник МИТХТ. 2010. Т. 5. С. 69–74.
  9. 9. Невредимова Т.С., Мармий Н.В., Есипов Д.С., Есипова О.В., Швец В.И. // Вестник МИТХТ. 2014. Т. 9. С. 3–10.
  10. 10. Мармий Н.В., Есипов Д.С. // Вестник Моск. ун-та. Серия 16. Биология. 2015. P. 19–23.
  11. 11. Черников А.В., Гудков С.В., Усачева А.М., Брусков В.И. // Усп. биол. химии. 2017. Т. 57. С. 267– 302.
  12. 12. Huh J.Y., Jung I., Piao L., Ha H., Chung M.H. // Biochem. Biophys. Res. Commun. 2017. V. 491. P. 890–896. https://doi.org/10.1016/j.bbrc.2017.07.132
  13. 13. Steinhubl S.R. // Am. J. Cardiol. 2008. V. 101. P. 14D– 19D. https://doi.org/10.1016/j.amjcard.2008.02.003
  14. 14. Kawanishi S., Oikawa S., Murata M. // Antioxid. Redox. Signal. 2005. V. 7. P. 1728–1739. https://doi.org/10.1089/ars.2005.7.1728
  15. 15. Hahm J.Y., Park J., Jang E.S., Chi S.W. // Exp. Mol. Med. 2022. V. 54. P. 1626–1642. https://doi.org/10.1038/s12276-022-00822-z
  16. 16. Zandvakili I., Lin Y., Morris J.C., Zheng Y. // Oncogene. 2017. V. 36. P. 3213–3222. https://doi.org/10.1038/onc.2016.473
  17. 17. Kuchino Y., Mori F., Kasai H., Inoue H., Iwai S., Miura K., Ohtsuka E., Nishimura S. // Nature. 1987. V. 327. P. 77–79. https://doi.org/10.1038/327077a0
  18. 18. Lowe L.G., Guengerich F.P. // Biochemistry. 1996. V. 35. P. 9840–9849. https://doi.org/10.1021/bi960485x
  19. 19. de Vega M., Salas M. // Nucleic Acids Res. 2007. V. 35. P. 5096–5107. https://doi.org/10.1093/nar/gkm545
  20. 20. Garrido P., Mejia E., Garcia-Diaz M., Blanco L., Picher A.J. // Nucleic. Acids Res. 2014. V. 42. P. 534–543. https://doi.org/10.1093/nar/gkt870
  21. 21. Taggart D.J., Fredrickson S.W., Gadkari, Suo Z. // Chem. Res. Toxicol. 2014. V. 27. P. 931–940. https://doi.org/10.1021/tx500088e
  22. 22. Whitaker A.M., Smith M.R., Schaich M.A., Freudenthal B.D. // Nucleic. Acids Res. 2017. V. 45. P. 6934–6944. https://doi.org/10.1093/nar/gkx293
  23. 23. Johansen M.E., Muller J.G., Xu X., Burrows C.J. // Biochemistry. 2005. V. 44. P. 5660–5671. https://doi.org/10.1021/bi047580n
  24. 24. Kawanishi S., Oikawa S. // Ann. NY Acad. Sci. 2004. V. 1019. P. 278–284. https://doi.org/10.1196/annals.1297.047
  25. 25. Morero N.R., Argaraña C.E. // FEMS Microbiol. Lett. 2009. V. 290. P. 217–226. https://doi.org/10.1111/j.1574-6968.2008.01411.x
  26. 26. Völker J., Plum G.E., Klump H.H., Breslauer K.J. // Biopolymers. 2010. V. 93. P. 355–369. https://doi.org/10.1002/bip.21343
  27. 27. De Luca G., Russo M.T., Degan P., Tiveron C., Zijno A., Meccia E., Ventura I., Mattei E., Nakabeppu Y., Crescenzi M., Pepponi R., Pèzzola A., Popoli P., Bignami M. // PLoS Genet. 2008. V. 4. P. e1000266. https://doi.org/10.1371/journal.pgen.1000266
  28. 28. Nguyen K.V., Burrows C.J. // J. Am. Chem. Soc. 2011. V. 133. P. 14586–14589. https://doi.org/10.1021/ja2072252
  29. 29. Moore J.M., Correa R., Rosenberg S.M., Hastings P.J. // PLoS Genet. 2017. V. 13. P. e1006733 . https://doi.org/10.1371/journal.pgen.1006733
  30. 30. An J., Yin M., Yin J., Wu S., Selby C.P., Yang Y., Sancar A., Xu G.L., Qian M., Hu J. // Nucleic. Acids Res. 2021. V. 49. P. 12252–12267. https://doi.org/10.1093/nar/gkab1022
  31. 31. Stebbeds W.J.D., Lunec J., Larcombe L.D. // PLoS One. 2012. V. 7. P. e43735. https://doi.org/10.1371/journal.pone.0043735
  32. 32. Pastukh V., Roberts J.T., Clark D.W., Bardwell G.C., Patel M., Al-Mehdi A.B., Borchert G.M., Gillespie M.N. // Am. J. Physiol. Lung Cell Mol. Physiol. 2015. V. 309. P. 1367–1375. https://doi.org/10.1152/ajplung.00236.2015
  33. 33. Terzidis M.A., Prisecaru A., Molphy Z., Barron N., Randazzo A., Dumont E., Krokidis M.G., Kellett A., Chatgilialoglu C. // Free Radic. Res. 2016. V. 50. P. S91–S101. https://doi.org/10.1080/10715762.2016.1244820
  34. 34. Perillo B., Ombra M.N., Bertoni A., Cuozzo C., Sacchetti S., Sasso A., Chiariotti L., Malorni A., Abbondanza C., Avvedimento E.V. // Science. 2008. V. 319. P. 202–206. https://doi.org/10.1126/science.1147674
  35. 35. Zarakowska E., Gackowski D., Foksinski M., Olinski R. // Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2014. V. 764–765. P. 58–63. https://doi.org/10.1016/j.mrgentox.2013.09.002
  36. 36. Ma L.S., Jiang C.J., Cui M., Lu R., Liu S.S., Zheng B.B., Li L., Li X. // Acta Pharmacol. Sin. 2013. V. 34. P. 1093– 1100. https://doi.org/10.1038/aps.2013.44
  37. 37. Fleming A.M., Ding Y., Burrows C.J. // Proc. Natl. Acad. Sci. USA. 2017. V. 114. P. 2604–2609. https://doi.org/10.1073/pnas.1619809114
  38. 38. Hong G.U., Kim N.G., Jeoung D., Ro J.Y. // J. Neuro-immunol. 2013. V. 260. P. 60–73. https://doi.org/10.1016/j.jneuroim.2013.04.002
  39. 39. Kim J.S., Kim D.Y., Lee J.K., Ro J.Y., Chung M.H. // Eur. J. Pharmacol. 2011. V. 651. P. 218–226. https://doi.org/10.1016/j.ejphar.2010.10.087
  40. 40. Huh J.Y., Son D.J., Lee Y., Lee J., Kim B., Lee H.M., Jo H., Choi S., Ha H., Chung M.H. // Free Radic. Biol. Med. 2012. V. 53. P. 109–121. https://doi.org/10.1016/j.freeradbiomed.2012.03.023
  41. 41. Ock C.Y., Kim E.H., Choi D.J., Lee H.J., Hahm K.B., Chung M.H. // World J. Gastroenterol. 2012. V. 18. P. 302–308. https://doi.org/10.3748/wjg.v18.i4.302
  42. 42. Kim D.H., Cho I.H., Kim H.S., Jung J.E., Kim J.E., Hong G.U., Kim N.G., Ro J.Y. // Radiat. Res. 2014. V. 181. P. 425–438. https://doi.org/10.1667/rr13547.1
  43. 43. Ko S.H., Lee J.K., Lee H.J., Ye S.K., Kim H.S., Chung M.H. // Biochem. Biophys. Res. Commun. 2014. V. 443. P. 610–616. https://doi.org/10.1016/j.bbrc.2013.12.018
  44. 44. Shin S.K., Kim K.O., Kim S.H., Kwon O.S., Choi C.S., Jeong S.H., Kim Y.S., Kim J.H., Chung M.H. // J. Gastroenterol. Hepatol. 2020. V. 35. P. 1078–1087. https://doi.org/10.1111/jgh.14979
  45. 45. Kim H.S., Ye S.K., Cho I.H., Jung J.E., Kim D.H., Choi S., Kim Y.S., Park C.G., Kim T.Y., Lee J.W., Chung M.H. // Free Radic. Biol. Med. 2006. V. 41. P. 1392–1403. https://doi.org/10.1016/j.freeradbiomed.2006.07.018
  46. 46. Choi S., Choi H.H., Lee S.H., Ko S.H., You H.J., Ye S.K., Chung M.H. // Free Radic. Biol. Med. 2007. V. 43. P. 1594–1603. https://doi.org/10.1016/j.freeradbiomed.2007.08.022
  47. 47. Choi S., Choi H.H., Choi J.H., Yoon B.H., You H.J., Hyun J.W., Kim J.E., Ye S.K., Chung M.H. // Leuk. Res. 2006. V. 30. P. 1425–1436. https://doi.org/10.1016/j.leukres.2006.03.020
  48. 48. Lee J.K., Ko S.H., Ye S.K., Chung M.H. // J. Dermatol. Sci. 2013. V. 70. P. 49–57. https://doi.org/10.1016/j.jdermsci.2013.01.010
  49. 49. Hwang S., Kim S.H., Yoo K.H., Chung M.H., Lee J.W., Son K.H. // BMC Mol. Cell Biol. 2022. V. 23. P. 55. https://doi.org/10.1007/s00421-012-2401-1
  50. 50. Hajas G., Bacsi A., Aguilera-Aguirre L., Hegde M.L., Tapas K.H., Sur S., Radak Z., Ba X., Boldogh I. // Free Radic. Biol. Med. 2013. V. 61. P. 384–394. https://doi.org/10.1074/jbc.M116.751453
  51. 51. Kostyuk S., Tabakov V.J., Chestkov V.V., Konkova M.S., Glebova K.V., Baydakova G.V., Ershova E.S., Izhevskaya V.L., Baranova A., Veiko N.N. // Mutat. Res. 2013. V. 747–748. P. 6–18. https://doi.org/10.3390/genes13122283
  52. 52. Hyun J.W., Jung Y.C., Kim H.S., Choi E.Y., Kim J.E., Yoon B.H., Yoon S.H., Lee Y.S., Choi J., You H.J., Chung M.H. // Mol. Cancer Res. 2003. V. 1. P. 290– 299. https://aacrjournals.org/mcr/article/1/4/290/232239/8- Hydroxydeoxyguanosine-Causes-Death-of-Human
  53. 53. Park J.M., Han Y.M., Jeong M., Chung M.H., Kwon C., Ko K.H., Hahm K.B. // Free Radic. Biol. Med. 2017. V. 110. P. 151–161. https://doi.org/10.1016/j.freeradbiomed.2017.06.003
  54. 54. Pazmandi K., Agod Z., Kumar B.V., Szabo A., Fekete T., Sogor V., Veres A., Boldogh I., Rajnavolgyi E., Lanyi A., Bacsi A. // Free Radic. Biol. Med. 2014. V. 77. P. 281– 290. https://doi.org/10.1016/j.freeradbiomed.2014.09.028
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library