- Код статьи
- S19982860S0132342325040126-1
- DOI
- 10.7868/S1998286025040126
- Тип публикации
- Статья
- Статус публикации
- Опубликовано
- Авторы
- Том/ Выпуск
- Том 51 / Номер выпуска 4
- Страницы
- 678-687
- Аннотация
- Работа посвящена сравнению альтернативных пиперидину деблокирующих агентов на примере твердофазного синтеза инграмона, обладающего противовоспалительной активностью, и метилина – агониста трансмембранного API-рецептора. Возможность применения этих пептидов для терапии сердечно-сосудистых заболеваний предполагает оптимизацию способов их синтеза. Особое внимание в работе уделено выбору реагента для снятия Fmoc-защиты в твердофазном синтезе пептидов, который обеспечивал бы высокий выход и чистоту целевого продукта с минимальным количеством родственных примесей. При синтезе аспартин-пептида инграмона наименьшее содержание побочных продуктов было отмечено при использовании для отщепления Fmoc-защиты смеси, содержащей 10% пиперазина. Кроме того, пиперазин – это доступный и малотоксичный реагент, что привлекательно для крупномасштабного твердофазного синтеза пептидов. При синтезе метилина максимальный выход продукта был получен при использовании деблокирующей смеси на основе пирролидина. Подобранные деблокирующие реагенты могут успешно заменить токсичный пиперидин в твердофазном синтезе пептидов не только в лабораторном, но и в препаративном масштабе. Эти реагенты могут найти применение при получении пептидных фармацевтических субстанций.
- Ключевые слова
- твердофазный синтез пептидов реагенты для отщепления Fmoc-группы инграмон метиллин образование аспартимида образование дихетопиперазина 4-метилпиперидин пирролидин пиперазин
- Дата публикации
- 15.02.2025
- Год выхода
- 2025
- Всего подписок
- 0
- Всего просмотров
- 9
Библиография
- 1. Vlieghe P., Lisowski V., Martinez J., Khrestchatsky M. // Drug Discov. Today. 2010. V. 15. P. 40–56. https://doi.org/10.1016/j.drudis.2009.10.009
- 2. Fosgerau K., Hoffmann T. // Drug Discov. Today. 2015. V. 20. P. 122–128. https://doi.org/10.1016/j.drudis.2014.10.003
- 3. de la Torre B.G., Albericio F. // Molecules. 2023. V. 28. P. 1038. https://doi.org/10.3390/molecules28031038
- 4. Bruckdorfer T., Marder O., Albericio F. // Curr. Pharm. Biotechnol. 2004. V. 5. P. 29–43. https://doi.org/10.2174/1389201043489620
- 5. Behrendt R., White P., Offer J. // J. Pept. Sci. 2016. V. 22. P. 4–27. https://doi.org/10.1002/psc.2836
- 6. Li W., O’Brien-Simpson N.M., Hossain M.A., Wade J.D. // Aust. J. Chem. 2020. V. 73. P. 271–276. https://doi.org/10.1071/CH19427
- 7. Fmoc Solid Phase Peptide Synthesis. A Practical Approach / Eds. Chan W.C., White P.D. Oxford University Press, 1999. https://doi.org/10.1093/oso/9780199637256.001.0001
- 8. Carpino L.A. // Acc. Chem. Res. 1987. V. 20. P. 401–407.
- 9. Luna O.F., Gomez J., Cárdenas C., Albericio F., Marshall S.H., Guzmán F. // Molecules. 2016. V. 21. P. 1542. https://doi.org/10.3390/molecules21111542
- 10. Drug Enforcement Administration (DEA), Department of Justice. Control of immediate precursor used in the illicit manufacture of fentanyl as a schedule II controlled substance. Final rule. Fed Regist. 2010. V. 75. P. 37295–37299. https://www.federalregister.gov/documents/2010/06/29/2010-15520/control-of-immediate-precursor-used-in-the-illicit-manufacture-of-fentanyl-as-a-schedule-ii
- 11. List of Precursors and chemicals Frequently used in the illicit manufacture of narcotic drugs and psychotropic substances under International Control. https://inch.org/documents/PRECURSORS/RED_LIST/2020/Red_List_2020_E.pdf
- 12. Петросянц М.В., Палькеева М.Е., Молокоедов А.С., Овчинников М.В., Сидорова М.В. // Хим.-фарм. журн. 2024. T. 58. C. 38–43. https://doi.org/10.30906/0023-1134-2024-58-3-38-43
- 13. Sidorova M.V., Molokoedov A.S., Aref’eva T.I., Kukhtina N.B., Krasnikova T.I., Bespalova Zh.D., Bushuev V.N. // Russ. J. Bioorg. Chem. 2004. V. 30. P. 523–533. https://doi.org/10.1023/B:RUBl.0000049768.98894.f5
- 14. Sidorova M.V., Az’muko A.A., Pal’keeva M.E., Molokoedov A.S., Bushuev V.N., Dvoryantsev S.N., Shulzhenko V.S., Pelogeykina Y.A., Pisarenko O.I., Bespalova Zh.D. // Russ. J. Bioorg. Chem. 2012. V. 38. P. 30–40. https://doi.org/10.1134/S1068162012010177
- 15. Lauer L.L., Fields C.G., Fields G.B. // Lett. Pept. Sci. 1995. V. 1. P. 197–205.
- 16. Yang Y., Hansen L. // ACS Omega. 2022. V. 7. P. 12015–12020. https://doi.org/10.1021/acsomega.2c00214
- 17. Wade J.D., Mathieu M.N., Macris M., Tregear G.W. // Lett. Pept. Sci. 2000. V. 7. P. 107–112. https://doi.org/10.1023/A:1008966207751
- 18. Sidorova M.V., Dudkina U.S., Avdeev D.V., Palkeeva M.E., Molokoedov A.S., Ovchinnikov M.V., Azmuko A.A., Bushuev V.N., Arefava T.I., Grechishnikov S.B., Kudryavtseva E.V. // Russ. J. Bioorg. Chem. 2020. V. 46. P. 520–529. https://doi.org/10.1134/S1068162020040202
- 19. Craveur P., Joseph A.P., Poulain P., de Brevern A.G., Rebehmed J. // Amino Acids. 2013. V. 45. P. 279–289. https://doi.org/10.1007/s00726-013-1511-3
- 20. Pedroso E., Grandas A., de las Herasl X., Eritja R., Giralt E. // Tetrahedron Lett. 1986. V. 27. P. 743–746.
- 21. pK data compiled by Williams R. American Chemical Society, Organic Division, 2022. https://organicchemistrydata.org/hansreich/resources/pka/
- 22. Eissler S., Kley M., Bächle D., Loidl G., Meiera T., Samson D. // J. Pept. Sci. 2017. V. 23. P. 757–762. https://doi.org/10.1002/psc.3021
- 23. Szczepanska E., Grobelna B., Ryl J., Kalpa A., Ossowski T., Niedzialkowski P. // Molecules. 2020. V. 25. P. 3983. https://doi.org/10.3390/molecules25173983
- 24. Knorr R., Trzeciak A., Bannwarth W., Gillessen D. // Tetrahedron Lett. 1989. V. 30. P. 1927–1930.
- 25. Ralhan K., Krishnakumar V.G., Gupta Sh. // RSC Adv. 2015. V. 5. P. 104417. https://doi.org/10.1039/c5ra23441g
- 26. Barlos K., Gatos D. // Convergent Peptide Synthesis. In: Fmoc Solid Phase Peptide Synthesis. A Practical Approach / Eds. Chan W.C., White P.D. Oxford University Press, 2000. P. 215–228.