RAS BiologyБиоорганическая химия Russian Journal of Bioorganic Chemistry

  • ISSN (Print) 0132-3423
  • ISSN (Online) 1998-2860

Comparison of Alternative Piperidine Deblocking Agents in Solid-Phase Synthesis of Ingramon and Methylin

PII
S19982860S0132342325040126-1
DOI
10.7868/S1998286025040126
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 51 / Issue number 4
Pages
678-687
Abstract
The work is devoted to the comparison of alternative piperidine deblocking agents using the examples of solid-phase synthesis of ingramon, which has anti-inflammatory activity, and methylin, an agonist of the transmembrane API receptor. The possibility of using these peptides for the treatment of cardiovascular diseases dictates the need to develop optimized methods for their synthesis. Particular attention in the work is paid to the choice of a reagent for removing Fmoc protection in solid-phase peptide synthesis, which would ensure a high yield and purity of the target product with a minimum amount of related impurities. In the synthesis of the aspartyl peptide ingramon, the lowest content of by-products was noted when using a mixture containing 10% piperazine for cleaving the Fmoc protection. In addition, piperazine is an accessible and low-toxic reagent, which is attractive for large-scale solid-phase peptide synthesis. In the synthesis of methylin, the maximum yield of the product was obtained using a deblocking mixture based on pyrrolidine. The selected deblocking reagents can successfully replace toxic piperidine in solid-phase peptide synthesis not only in the laboratory but also in the preparative scale. These reagents can find application in obtaining peptide pharmaceutical substances.
Keywords
твердофазный синтез пептидов реагенты для отщепления Fmoc-группы инграмон метиллин образование аспартимида образование дихетопиперазина 4-метилпиперидин пирролидин пиперазин
Date of publication
15.02.2025
Year of publication
2025
Number of purchasers
0
Views
10

References

  1. 1. Vlieghe P., Lisowski V., Martinez J., Khrestchatsky M. // Drug Discov. Today. 2010. V. 15. P. 40–56. https://doi.org/10.1016/j.drudis.2009.10.009
  2. 2. Fosgerau K., Hoffmann T. // Drug Discov. Today. 2015. V. 20. P. 122–128. https://doi.org/10.1016/j.drudis.2014.10.003
  3. 3. de la Torre B.G., Albericio F. // Molecules. 2023. V. 28. P. 1038. https://doi.org/10.3390/molecules28031038
  4. 4. Bruckdorfer T., Marder O., Albericio F. // Curr. Pharm. Biotechnol. 2004. V. 5. P. 29–43. https://doi.org/10.2174/1389201043489620
  5. 5. Behrendt R., White P., Offer J. // J. Pept. Sci. 2016. V. 22. P. 4–27. https://doi.org/10.1002/psc.2836
  6. 6. Li W., O’Brien-Simpson N.M., Hossain M.A., Wade J.D. // Aust. J. Chem. 2020. V. 73. P. 271–276. https://doi.org/10.1071/CH19427
  7. 7. Fmoc Solid Phase Peptide Synthesis. A Practical Approach / Eds. Chan W.C., White P.D. Oxford University Press, 1999. https://doi.org/10.1093/oso/9780199637256.001.0001
  8. 8. Carpino L.A. // Acc. Chem. Res. 1987. V. 20. P. 401–407.
  9. 9. Luna O.F., Gomez J., Cárdenas C., Albericio F., Marshall S.H., Guzmán F. // Molecules. 2016. V. 21. P. 1542. https://doi.org/10.3390/molecules21111542
  10. 10. Drug Enforcement Administration (DEA), Department of Justice. Control of immediate precursor used in the illicit manufacture of fentanyl as a schedule II controlled substance. Final rule. Fed Regist. 2010. V. 75. P. 37295–37299. https://www.federalregister.gov/documents/2010/06/29/2010-15520/control-of-immediate-precursor-used-in-the-illicit-manufacture-of-fentanyl-as-a-schedule-ii
  11. 11. List of Precursors and chemicals Frequently used in the illicit manufacture of narcotic drugs and psychotropic substances under International Control. https://inch.org/documents/PRECURSORS/RED_LIST/2020/Red_List_2020_E.pdf
  12. 12. Петросянц М.В., Палькеева М.Е., Молокоедов А.С., Овчинников М.В., Сидорова М.В. // Хим.-фарм. журн. 2024. T. 58. C. 38–43. https://doi.org/10.30906/0023-1134-2024-58-3-38-43
  13. 13. Sidorova M.V., Molokoedov A.S., Aref’eva T.I., Kukhtina N.B., Krasnikova T.I., Bespalova Zh.D., Bushuev V.N. // Russ. J. Bioorg. Chem. 2004. V. 30. P. 523–533. https://doi.org/10.1023/B:RUBl.0000049768.98894.f5
  14. 14. Sidorova M.V., Az’muko A.A., Pal’keeva M.E., Molokoedov A.S., Bushuev V.N., Dvoryantsev S.N., Shulzhenko V.S., Pelogeykina Y.A., Pisarenko O.I., Bespalova Zh.D. // Russ. J. Bioorg. Chem. 2012. V. 38. P. 30–40. https://doi.org/10.1134/S1068162012010177
  15. 15. Lauer L.L., Fields C.G., Fields G.B. // Lett. Pept. Sci. 1995. V. 1. P. 197–205.
  16. 16. Yang Y., Hansen L. // ACS Omega. 2022. V. 7. P. 12015–12020. https://doi.org/10.1021/acsomega.2c00214
  17. 17. Wade J.D., Mathieu M.N., Macris M., Tregear G.W. // Lett. Pept. Sci. 2000. V. 7. P. 107–112. https://doi.org/10.1023/A:1008966207751
  18. 18. Sidorova M.V., Dudkina U.S., Avdeev D.V., Palkeeva M.E., Molokoedov A.S., Ovchinnikov M.V., Azmuko A.A., Bushuev V.N., Arefava T.I., Grechishnikov S.B., Kudryavtseva E.V. // Russ. J. Bioorg. Chem. 2020. V. 46. P. 520–529. https://doi.org/10.1134/S1068162020040202
  19. 19. Craveur P., Joseph A.P., Poulain P., de Brevern A.G., Rebehmed J. // Amino Acids. 2013. V. 45. P. 279–289. https://doi.org/10.1007/s00726-013-1511-3
  20. 20. Pedroso E., Grandas A., de las Herasl X., Eritja R., Giralt E. // Tetrahedron Lett. 1986. V. 27. P. 743–746.
  21. 21. pK data compiled by Williams R. American Chemical Society, Organic Division, 2022. https://organicchemistrydata.org/hansreich/resources/pka/
  22. 22. Eissler S., Kley M., Bächle D., Loidl G., Meiera T., Samson D. // J. Pept. Sci. 2017. V. 23. P. 757–762. https://doi.org/10.1002/psc.3021
  23. 23. Szczepanska E., Grobelna B., Ryl J., Kalpa A., Ossowski T., Niedzialkowski P. // Molecules. 2020. V. 25. P. 3983. https://doi.org/10.3390/molecules25173983
  24. 24. Knorr R., Trzeciak A., Bannwarth W., Gillessen D. // Tetrahedron Lett. 1989. V. 30. P. 1927–1930.
  25. 25. Ralhan K., Krishnakumar V.G., Gupta Sh. // RSC Adv. 2015. V. 5. P. 104417. https://doi.org/10.1039/c5ra23441g
  26. 26. Barlos K., Gatos D. // Convergent Peptide Synthesis. In: Fmoc Solid Phase Peptide Synthesis. A Practical Approach / Eds. Chan W.C., White P.D. Oxford University Press, 2000. P. 215–228.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library