RAS BiologyБиоорганическая химия Russian Journal of Bioorganic Chemistry

  • ISSN (Print) 0132-3423
  • ISSN (Online) 1998-2860

Synthesis and Properties of Phosphoryl Guanidine Oligonucleotides Containing 2ʹ,4ʹ-Locked Nucleotides

PII
S0132342325020101-1
DOI
10.31857/S0132342325020101
Publication type
Review
Status
Published
Authors
Volume/ Edition
Volume 51 / Issue number 2
Pages
318-328
Abstract
This work presents a new version of synthetic analogues of oligonucleotides containing two types of modifications – phosphoryl guanidine (PG) internucleotide group and 2ʹ,4ʹ-locked ribose fragments (LNA) – in one nucleotide unit. It has been shown the presence of PG-LNA linkages decreases the electrophoretic mobility of the oligonucleotides, primarily due to the electroneutrality of the PG group. Additionally, the PG-LNA modifications increase the hydrophobicity of the oligonucleotides, resulting in longer retention times during reversed-phase chromatography. The thermal stability of complementary duplexes containing PG-LNA oligonucleotides has been investigated. It was found the melting temperature increases by 1.5–4.0°C per modification, depending on the position of the modified unit and the ionic strength of the solution. Furthermore, circular dichroism spectropolarimetry revealed the secondary structure of the complexes formed by PG-LNA differs from the B-form, which may be attributed to the presence of LNA fragments exhibiting a 3'-endo conformation of the ribose ring. Thus, PG-LNA oligonucleotides can be considered as a new structural analogue of RNA with partially uncharged backbone. Based on the data obtained, it can be concluded that PG-LNA oligonucleotides can be considered as a promising tool for various methods of isolation and analysis of nucleic acids.
Keywords
модифицированные олигонуклеотиды замкнутые нуклеиновые кислоты (LNA) фосфорилгуанидиновые (PG) олигонуклеотиды температура плавления модифицированных дуплексов
Date of publication
09.11.2025
Year of publication
2025
Number of purchasers
0
Views
44

References

  1. 1. Agrawal S., Iyer R.P. // Curr. Opin. Biotechnol. 1995. V. 6. P. 12–19. https://doi.org/10.1016/0958-1669 (95)80003-4
  2. 2. Clafré S.A., Rinaldi M., Gasparini P., Seripa D., Bisceglia L., Zelante L., Farace M.G., Fazio V.M. // Nucleic Acids Res. 1995. V. 23. P. 4134–4142. https://doi.org/10.1093/nar/23.20.4134
  3. 3. Wang S.S., Xiong E., Bhadra S., Ellington A.D. // PLoS One. 2022. V. 17. P. 1–16. https://doi.org/10.1371/journal.pone.0268575
  4. 4. Bailey J.K., Shen W., Liang X.H., Crooke S.T. // Nucleic Acids Res. 2017. V. 45. P. 10649–10671. https://doi.org/10.1093/nar/gkx709
  5. 5. Metelev V.G., Oretskaya T.S. // Russ. J. Bioorg. Chem. 2021. V. 47. P. 179–183. https://doi.org/10.31857/S0132342321020172
  6. 6. Titze-de-Almeida R., David C., Titze-de-Almeida S.S. // Pharm. Res. 2017. V. 34. P. 1339–1363. https://doi.org/10.1007/s11095-017-2134-2
  7. 7. Setten R.L., Rossi J.J., Han S.P. // Nat. Rev. Drug Discov. 2019. V. 18. P. 421–446. https://doi.org/10.1038/s41573-019-0017-4
  8. 8. Fratczak A., Kierzek R., Kierzek E. // Biochemistry. 2009. V. 48. P. 514–516. https://doi.org/10.1021/bi8021069
  9. 9. Kupryushkin M.S., Pyshnyi D.V., Stetsenko D.A. // Acta Naturae. 2014. V. 6. P. 116–118. https://cyberleninka.ru/article/n/phosphoryl-guanidines-a-new-type-of-nucleic-acid-analogues
  10. 10. Freier S.M., Altmann K.H. // Nucleic Acids Res. 1997. V. 25. P. 4429–4443. https://doi.org/10.1093/nar/25.22.4429
  11. 11. Koshkin A.A., Singh S.K., Nielsen P., Rajwanshi V.K., Kumar R., Meldgaard M., Olsen C.E., Wengel J. // Tetrahedron. 1998. V. 54. P. 3607–3630. https://doi.org/10.1016/S0040-4020 (98)00094-5
  12. 12. Egli M., Minasov G., Teplova M., Kumar R., Wengel J. // Chem. Commun. 2001. V. 1. P. 651–652. https://doi.org/10.1039/B009447L
  13. 13. Lomzov A.A., Kupryushkin M.S., Shernyukov A.V., Nekrasov M.D., Dovydenko I.S., Stetsenko D.A., Pyshnyi D.V. // Biochem. Biophys. Res. Commun. 2019. V. 513. P. 807–811. https://doi.org/10.1016/j.bbrc.2019.04.024
  14. 14. Dyudeeva E.S., Kupryushkin M.S., Lomzov A.A., Pyshnaya I.A., Pyshnyi D.V. // Russ. J. Bioorg. Chem. 2019. V. 45. P. 709–718. https://doi.org/10.1134/S1068162019060153
  15. 15. Golyshev V.M., Pyshnyi D.V., Lomzov A.A. // J. Phys. Chem. B. 2021. V. 125. P. 2841–2855. https://doi.org/10.1021/acs.jpcb.0c10214
  16. 16. Kaur H., Arora A., Wengel J., Maiti S. // Biochemistry. 2006. V. 45. P. 7347–7355. https://doi.org/10.1021/bi060307w
  17. 17. Hull C., Szewcyk C., St. John P.M. // Nucleosides Nucleotides Nucleic Acids. 2012. V. 31. P. 28–41. https://doi.org/10.1080/15257770.2011.639826
  18. 18. Wengel J., Koshkin A., Singh S.K., Nielsen P., Meldgaard M., Rajwanshi V.K., Kumar R., Skouv J., Nielsen C.B., Jacobsen J.P., Jacobsen N., Olsen C.E. // Nucleosides Nucleotides. 1999. V. 18. P. 1365–1370. https://doi.org/10.1080/07328319908044718
  19. 19. Kypr J., Kejnovská I., Renčiuk D., Vorlíčková M. // Nucleic Acids Res. 2009. V. 37. P. 1713–1725. https://doi.org/10.1093/nar/gkp026
  20. 20. Marin V., Hansen H.F., Koch T., Armitage B.A. // J. Biomol. Struct. Dyn. 2004. V. 21. P. 841–850. https://doi.org/10.1080/07391102.2004.10506974
  21. 21. Vivek K., Rajwanshi V.K., Håkansson A.E., Sørensen M.D., Pitsch S., Singh S.K., Kumar K., Nielsen P., Wengel J. // Angewandte Chemie. 2000. V. 112. P. 1722–1725. https://doi.org/10.1002/ (SICI)1521-3757(2000 0502)112:93.0.CO;2-Z
  22. 22. Stetsenko D.A., Kupryushkin M.S., Pyshnyi D.V. // Int. Application WO2016028187A1, 2016.
  23. 23. Pavlova A.S., Yakovleva K.I., Epanchitseva A.V., Kupryushkin M.S., Pyshnaya I.A., Pyshnyi D.V., Ryabchikova E.I., Dovydenko I.S. // Int. J. Mol. Sci. 2021. V. 22. P. 9784. https://doi.org/10.3390/ijms22189784
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library