ОБНБиоорганическая химия Russian Journal of Bioorganic Chemistry

  • ISSN (Print) 0132-3423
  • ISSN (Online) 1998-2860

Перспективы использования конъюгатов антител с лекарством в терапии рака

Код статьи
S0132342325020048-1
DOI
10.31857/S0132342325020048
Тип публикации
Обзор
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 51 / Номер выпуска 2
Страницы
233-254
Аннотация
На сегодняшний день рак продолжает оставаться одним из самых опасных заболеваний, ежегодно становясь причиной гибели >9 млн человек в мире. Поэтому востребованы новые более эффективные методы терапии рака. Иммунотерапия на основе моноклональных антител уже показала свою эффективность, а конъюгаты антител с лекарством (antibody-drug conjugates, ADC), как один из ее успешных вариантов, имеют значительный и еще не полностью реализованный потенциал. ADC представляют собой моноклональные антитела, связанные посредством линкеров с цитотоксическими препаратами. ADC во многих клинических испытаниях и уже в стандартной клинической практике продемонстрировали значимые преимущества по сравнению с комбинированной терапией немодифицированными антителами и химиопрепаратами. Благодаря новым достижениям в области молекулярной иммунологии и биотехнологии потенциал ADC оценивается как прорывной, это позволит им стать наиболее востребованными противоопухолевыми препаратами уже в ближайшие годы. ADC способны прицельно доставлять лекарственные препараты в опухолевые клетки, не оказывая при этом значительного токсического воздействия на здоровые ткани и органы. К настоящему времени в мире для использования в клинике одобрено 15 препаратов ADC, еще более сотни препаратов данного класса находятся на разных стадиях клинических испытаний. В то же время терапия с использованием ADC связана с определенными побочными эффектами и ограниченной эффективностью, в связи с чем существует необходимость в разработке более совершенных конъюгатов. В данном обзоре рассмотрены история развития ADC как терапевтического класса лекарств, их строение, мишени и механизм действия, а также обозначены перспективы и направления дальнейшей разработки данного класса противоопухолевых препаратов.
Ключевые слова
конъюгаты антител с лекарством ADC моноклональные антитела цитотоксические агенты интернализация иммунотерапия таргетная доставка терапия рака
Дата публикации
09.11.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
40

Библиография

  1. 1. Chen S., Cao Z., Prettner K., Kuhn M., Yang J., Jiao L., Wang Z., Li W., Geldsetzer P., Bärnighausen T., Bloom D.E., Wang C. // JAMA Oncol. 2023. V. 9. P. 465– 472. https://doi.org/10.1001/jamaoncol.2022.7826
  2. 2. Amjad M.T., Chidharla A., Kasi A. // StatPearls: StatPearls Publishing, 2023.
  3. 3. Esfahani K., Roudaia L., Buhlaiga N., Del Rincon S.V., Papneja N., Miller W.H., Jr. // Curr. Oncol. 2020. V. 27. P. 87–97. https://doi.org/10.3747/co.27.5223
  4. 4. Martinelli E., De Palma R., Orditura M., De Vita F., Ciardiello F. // Clin. Exp. Immunol. 2009. V. 158. P. 1–9. https://doi.org/10.1111/j.1365-2249.2009.03992.x
  5. 5. Yu S., Liu Q., Han X., Qin S., Zhao W., Li A., Wu K. // Exp. Hematol. Oncol. 2017. V. 6. P. 31. https://doi.org/10.1186/s40164-017-0091-4
  6. 6. Doronin I.I., Vishnyakova P.A., Kholodenko I.V., Ponomarev E.D., Ryazantsev D.Y., Molotkovskaya I.M., Kholodenko R.V. // BMC Cancer. 2014. T. 14. P. 295. https://doi.org/10.1186/1471-2407-14-295
  7. 7. Sterner R.C., Sterner R.M. // Blood Cancer J. 2021. V. 11. https://doi.org/10.1038/s41408-021-00459-7
  8. 8. Fu Z., Li S., Han S., Shi C., Zhang Y. // Signal Transduct. Target Ther. 2022. V. 7. P. 93. https://doi.org/10.1038/s41392-022-00947-7
  9. 9. Li J.H., Liu L., Zhao X.H. // Biomed. Pharmacother. 2024. V. 177. P. 117106. https://doi.org/10.1016/j.biopha.2024.117106
  10. 10. Sasso J.M., Tenchov R., Bird R., Iyer K.A., Ralhan K., Rodriguez Y., Zhou Q.A. // Bioconjug. Chem. 2023. V. 34. P. 1951–2000. https://doi.org/10.1021/acs.bioconjchem.3c00374
  11. 11. Petersen B.H., DeHerdt S.V., Schneck D.W., Bumol T.F. // Cancer Res. 1991. V. 51. P. 2286−2290.
  12. 12. Trail P.A., Willner D., Lasch S.J., Henderson A.J., Hofstead S., Casazza A.M., Firestone R.A., Hellström I., Hellström K.E. // Science. 1993. V. 261. P. 212–215. https://doi.org/10.1126/science.8327892
  13. 13. Beck A., Goetsch L., Dumontet C., Corvaïa N. // Nat. Rev. Drug Discov. 2017. V. 16. P. 315–337. https://doi.org/10.1038/nrd.2016.268
  14. 14. Sievers E.L., Larson R.A., Stadtmauer E.A., Estey E., Löwenberg B., Dombret H., Karanes C., Theobald M., Bennett J.M., Sherman M.L., Berger M.S., Eten C.B., Loken M.R., van Dongen J.J., Bernstein I.D., Appelbaum F.R., Mylotarg Study Group // J. Clin. Oncol. 2001. V. 19. P. 3244–3254. https://doi.org/10.1200/JCO.2001.19.13.3244
  15. 15. Guerra V.A., DiNardo C., Konopleva M. // Best Pract. Res. Clin. Haematol. 2019. V. 32. P. 145–153. https://doi.org/10.1016/j.beha.2019.05.008
  16. 16. Lambert J.M., Chari R.V. // J. Med. Chem. 2014. V. 57. P. 6949–6964. https://doi.org/10.1021/jm500766w
  17. 17. Baah S., Laws M., Rahman K.M. // Molecules. 2021. V. 26. P. 2943. https://doi.org/10.3390/molecules26102943
  18. 18. Wang Z., Li H., Gou L., Li W., Wang Y. // Acta Pharm. Sin. B. 2023. V. 13. P. 4025–4059. https://doi.org/10.1016/j.apsb.2023.06.015
  19. 19. Bhushan A., Misra P. // Curr. Oncol. Rep. 2024. V. 26. P. 1224–1235. https://doi.org/10.1007/s11912-024-01582-x
  20. 20. Chis A.A., Dobrea C.M., Arseniu A.M., Frum A., Rus L.L., Cormos G., Georgescu C., Morgovan C., Butuca A., Gligor F.G., Vonica-Tincu A.L. // Int. J. Mol. Sci. 2024. V. 25. P. 6969. https://doi.org/10.3390/ijms25136969
  21. 21. Riccardi F., Dal Bo M., Macor P., Toffoli G. // Front. Pharmacol. 2023. V. 14. P.1274088. https://doi.org/10.3389/fphar.2023.1274088
  22. 22. Staudacher A.H., Brown M.P. // Br. J. Cancer. 2017. V. 117. P. 1736–1742. https://doi.org/10.1038/bjc.2017.367
  23. 23. Kroemer G., Galassi C., Zitvogel L. // Nat. Immunol. 2022. V. 23. P. 487–500. https://doi.org/10.1038/s41590-022-01132-2
  24. 24. Bauzon M., Drake P.M., Barfield R.M., Cornali B.M., Rupniewski I., Rabuka D. // Oncoimmunol. 2019. V. 8. P. 1565859. https://doi.org/10.1080/2162402X.2019.1565859
  25. 25. Janke C., Magiera M.M. // Nat. Rev. Mol. Cell Biol. 2 020. V. 21. P. 307–326. https://doi.org/10.1038/s41580-020-0214-3
  26. 26. Burris H.A. // Am. Soc. Clin. Oncol. Educ. Book. 2012. P. 159–161. https://doi.org/10.14694/EdBook_AM.2012.32.109
  27. 27. Schwach J., Abdellatif M., Stengl A. // Front Biosci. (Landmark Ed). 2022. V. 27. P. 240. https://doi.org/10.31083/j.fbl2708240
  28. 28. Pommier Y. // Nat. Rev. Cancer. 2006. V. 6. P. 789– 802. https://doi.org/10.1038/nrc1977
  29. 29. Hartley J.A. // Expert Opin. Biol. Ther. 2021. V. 21. P. 931–943. https://doi.org/10.1080/14712598.2020.1776255
  30. 30. Yao H.P., Zhao H., Hudson R., Tong X.M., Wang M.H. // Drug Discov. Today. 2021. V. 26. P. 1857–1874. https://doi.org/10.1016/j.drudis.2021.06.012
  31. 31. Yin W., Rogge M. // Clin. Transl. Sci. 2019. V. 12. P. 98–112. https://doi.org/10.1111/cts.12624
  32. 32. Ramanjulu J.M., Pesiridis G.S., Yang J., Concha N., Singhaus R., Zhang S.Y., Tran J.L., Moore P., Lehmann S., Eberl H.C., Muelbaier M., Schneck J.L., Clemens J., Adam M., Mehlmann J., Romano J., Morales A., Kang J., Leister L., Graybill T.L., Charnley A.K., Ye G., Nevins N., Behnia K., Wolf A.I., Kasparcova V., Nurse K., Wang L., Puhl A.C., Li Y., Klein M., Hopson C.B., Guss J., Bantscheff M., Bergamini G., Reilly M.A., Lian Y., Duffy K.J., Adams J., Foley K.P., Gough P.J., Marquis R.W., Smothers J., Hoos A., Bertin J. // Nature. 2018. V. 564. P. 439–443. https://doi.org/10.1038/s41586-018-0705-y
  33. 33. Wei Y., Xiang H., Zhang W. // Front. Pharmacol. 2022. V. 13. P. 970553. https://doi.org/10.3389/fphar.2022.970553
  34. 34. Youle R.J., Strasser A. // Cell Biol. 2008. V. 9. P. 47–59. https://doi.org/10.1038/nrm2308
  35. 35. Almaliti J., Miller B., Pietraszkiewicz H., Glukhov E., Naman C.B., Kline T., Hanson J., Li X., Zhou S., Valeriote F.A., Gerwick W.H. // Eur. J. Med. Chem. 2019. V. 161. P. 416–432. https://doi.org/10.1016/j.ejmech.2018.10.024
  36. 36. Simmons J.K., Burke P.J., Cochran J.H., Pittman P.G., Lyon R.P. // Toxicol. Appl. Pharmacol. 2020. V. 392. P. 114932. https://doi.org/10.1016/j.taap.2020.114932
  37. 37. Jain N., Smith S.W., Ghone S., Tomczuk B. // Pharm. Res. 2015. V. 32. P. 3526–3540. https://doi.org/10.1007/s11095-015-1657-7
  38. 38. Anderson N.M., Simon M.C. // Curr. Biol. 2020. V. 30. P. R921–R925. https://doi.org/10.1016/j.cub.2020.06.081
  39. 39. Lu J., Jiang F., Lu A., Zhang G. // Int. J. Mol. Sci. 2016. V. 17. P. 561. https://doi.org/10.3390/ijms17040561
  40. 40. Kovtun Y.V., Goldmacher V.S. // Cancer Lett. 2007. V. 255. P. 232–240. https://doi.org/10.1016/j.canlet.2007.04.010
  41. 41. Walsh S.J., Bargh J.D., Dannheim F.M., Hanby A.R., Seki H., Counsell A.J., Ou X., Fowler E., Ashman N., Takada Y., Isidro-Llobet A., Parker J.S., Carroll J.S., Spring D.R. // Chem. Soc. Rev. 2021. V. 50. P. 1305– 1353. https://doi.org/10.1039/d0cs00310g
  42. 42. von Witting E., Hober S., Kanje S. // Bioconjug. Chem. 2021. V. 32. P. 1515–1524. https://doi.org/10.1021/acs.bioconjchem.1c00313
  43. 43. Wei C., Zhang G., Clark T., Barletta F., Tumey L.N., Rago B., Hansel S., Han X. // Anal. Chem. 2016. V. 88. P. 4979–4986. https://doi.org/10.1021/acs.analchem.6b00976
  44. 44. Junutula J.R., Raab H., Clark S., Bhakta S., Leipold D.D., Weir S., Chen Y., Simpson M., Tsai S.P., Dennis M.S., Lu Y., Meng Y.G., Ng C., Yang J., Lee C.C., Duenas E., Gorrell J., Katta V., Kim A., McDorman K., Flagella K., Venook R., Ross S., Spencer S.D., Wong W.L., Lowman H.B., Vandlen R., Sliwkowski M.X., Scheller R.H., Polakis P., Mallet W. // Nat. Biotechnol. 2008. V. 26. P. 925–932. https://doi.org/10.1038/nbt.1480
  45. 45. Axup J.Y., Bajjuri K.M., Ritland M., Hutchins B.M., Kim C.H., Kazane S.A., Halder R., Forsyth J.S., Santidrian A.F., Stafin K., Lu Y., Tran H., Seller A.J., Biroc S.L., Szydlik A., Pinkstaff J.K., Tian F., Sinha S.C., Felding-Habermann B., Smider V.V., Schultz P.G. // Proc. Natl. Acad. Sci. USA. 2012. V. 109. P. 16101– 16106. https://doi.org/10.1073/pnas.1211023109
  46. 46. Rabuka D., Rush J.S., deHart G.W., Wu P., Bertozzi C.R. // Nat. Protoc. 2012. V. 7. P. 1052–1067. https://doi.org/10.1038/nprot.2012.045
  47. 47. Zhu Z., Ramakrishnan B., Li J., Wang Y., Feng Y., Prabakaran P., Colantonio S., Dyba M.A., Qasba P.K., Dimitrov D.S. // MAbs. 2014. V. 6. P. 1190–1200. https://doi.org/10.4161/mabs.29889
  48. 48. Schumacher F.F., Nunes J.P., Maruani A., Chudasama V., Smith M.E., Chester K.A., Baker J.R., Caddick S. // Org. Biomol. Chem. 2014. V. 12. P. 7261– 7269. https://doi.org/10.1039/c4ob01550a
  49. 49. Metrangolo V., Engelholm L.H. // Cancers (Basel). 2024.V. 16. P. 447. https://doi.org/10.3390/cancers16020447
  50. 50. Hughes B. // Nat. Rev. Drug Discov. 2010. V. 9. P. 665–667. https://doi.org/10.1038/nrd3270
  51. 51. Zhang J., Woods C., He F., Han M., Treuheit M.J., Volkin D.B. // Biochemistry. 2018. V. 57. P. 5466–5479. https://doi.org/10.1021/acs.biochem.8b00575
  52. 52. Teicher B.A., Chari R.V. // Clin. Cancer Res. 2011. V. 17. P. 6389–6397. https://doi.org/10.1158/1078-0432.CCR-11-1417
  53. 53. Kholodenko R.V., Kalinovsky D.V., Doronin I.I., Ponomarev E.D., Kholodenko I.V. // Curr. Med. Chem. 2019. V. 26. P. 396–426. https://doi.org/10.2174/0929867324666170817152554
  54. 54. Lou H., Cao X. // Cancer Commun. (Lond). 2022. V. 42. P. 804–827. https://doi.org/10.1002/cac2.12330
  55. 55. Kholodenko V., Kalinovsky D.V., Svirshchevskaya E.V., Doronin I.I., Konovalova M.V., Kibardin A.V., Shamanskaya T.V., Larin S.S., Deyev S.M., Kholodenko R.V. // Molecules. 2019. V. 24. P. 3835. https://doi.org/10.3390/molecules24213835
  56. 56. Hussack G., Ryan S., van Faassen H., Rossotti M., MacKenzie C.R., Tanha J. // PLoS One. 2018. V. 13. P.e0208978. https://doi.org/10.1371/journal.pone.0208978
  57. 57. Muyldermans S. // Annu. Rev. Biochem. 2013. V. 82. P. 775–797. https://doi.org/10.1146/annurev-biochem-063011-092449
  58. 58. Thakur A., Huang M., Lum L.G. // Blood Rev. 2018. V. 32. P. 339–347. https://doi.org/10.1016/j.blre.2018.02.004
  59. 59. Newman M.J., Benani D.J. // J. Oncol. Pharm. Pract. 2016. V. 22. P. 639–645. https://doi.org/10.1177/1078155215618770
  60. 60. Zeng H., Ning W., Liu X., Luo W., Xia N. // Front. Med. 2024. V. 18. P. 597–621. https://doi.org/10.1007/s11684-024-1072-8
  61. 61. Strohl W.R. // Protein Cell. 2018. V. 9. P. 86–120. https://doi.org/10.1007/s13238-017-0457-8
  62. 62. Esapa B., Jiang J., Cheung A., Chenoweth A., Thurston D.E., Karagiannis S.N. // Cancers (Basel). 2023. V. 15. P. 1845. https://doi.org/10.3390/cancers15061845
  63. 63. Ingle G.S., Chan P., Elliott J.M., Chang W.S., Koeppen H., Stephan J.P., Scales S.J. // Br. J. Haematol. 2008. V. 140. P. 46–58. https://doi.org/10.1111/j.1365-2141.2007.06883.x
  64. 64. Short N.J., Kantarjian H. // Lancet Haematol. 2023. V. 10. P. e382–e388. https://doi.org/10.1016/S2352-3026 (23)00064-9
  65. 65. Xing L., Liu Y., Liu J. // Cancers (Basel). 2023. V. 15. P. 2240. https://doi.org/10.3390/cancers15082240
  66. 66. Burke J.M., Morschhauser F., Andorsky D., Lee C., Sharman J.P. // Expert. Rev. Clin. Pharmacol. 2020. V. 13. P. 1073–1083. https://doi.org/10.1080/17512433.2020.1826303
  67. 67. Criscitiello C., Morganti S., Curigliano G. // J. Hematol. Oncol. 2021. V. 14. P. 20. https://doi.org/10.1186/s13045-021-01035-z
  68. 68. de Azambuja E., Bedard P.L., Suter T., PiccartGebhart M. // Target Oncol. 2009. V. 4. P. 77–88. https://doi.org/10.1007/s11523-009-0112-2
  69. 69. Shvartsur A., Bonavida B. // Genes Cancer. 2015. V. 6. P. 84–105. https://doi.org/10.18632/genesandcancer.40
  70. 70. Ordu M., Karaaslan M., Sirin M.E., Yilmaz M. // North Clin. Istanb. 2023. V. 10. P. 583–588. https://doi.org/10.14744/nci.2023.36034
  71. 71. Gonzalez T., Muminovic M., Nano O., Vulfovich M. // Int. J. Mol. Sci. 2024. V. 25. P. 1046. https://doi.org/10.3390/ijms25021046
  72. 72. Ahmadi S.E., Shabannezhad A., Kahrizi A., Akbar A., Safdari S.M., Hoseinnezhad T., Zahedi M., Sadeghi S., Mojarrad M.G., Safa M. // Biomark Res. 2023. V. 11. P. 60. https://doi.org/10.1186/s40364-023-00504-6
  73. 73. Rui R., Zhou L., He S. // Front. Immunol. 2023. V. 14. P. 1212476. https://doi.org/10.3389/fimmu.2023.1212476
  74. 74. Anderson AC, Joller N, Kuchroo VK. // Immunity. 2016. V. 44 P.989-1004. https://doi.org/10.1016/j.immuni.2016.05.001
  75. 75. Negative A., Year S.S., Jeter A., Saragovi H.U. // Front. Oncol. 2023. V. 13. P. 1261090. https://doi.org/10.3389/fonc.2023.1261090
  76. 76. Philippova J., Shevchenko J., Sennikov S. // Front. Immunol. 2024. V. 15. P. 1371345. https://doi.org/10.3389/fimmu.2024.1371345
  77. 77. Nazha B., Inal C., Owonikoko T.K. // Front. Oncol. 2020. V. 10. P. 1000. https://doi.org/10.3389/fonc.2020.01000
  78. 78. Machy P., Mortier E., Birklé S. // Front. Pharmacol. 2023. V. 14. P. 1249929. https://doi.org/10.3389/fphar.2023.1249929
  79. 79. Ivanov N.S., Kachanov D.Y., Larin S.S., Mollaev M.D., Konovalov D.M., Shamanskaya T.V. // Russ. J. Pediatr. Hematol. Oncol. 2021. V. 8. P. 47–59.
  80. 80. Orsi G., Barbolini M., Ficarra G., Tazzioli G., Manni P., Petrachi T., Mastrolia I., Orvieto E., Spano C., Prapa M., Kaleci S., D’Amico R., Guarneri V., Dieci M.V., Cascinu S., Conte P., Piacentini F., Dominici M. // Oncotarget. 2017. V. 8. P. 31592–31600. https://doi.org/10.18632/oncotarget.16363
  81. 81. Ahmed M., Cheung N.K. // FEBS Lett. 2014. V. 588. P. 288–297. https://doi.org/10.1016/j.febslet.2013.11.030
  82. 82. Kholodenko I.V., Kalinovsky D.V., Doronin I.I., Deyev S.M., Kholodenko R.V. // J. Immunol. Res. 2018. V. 2018. P. 7394268. https://doi.org/10.1155/2018/7394268
  83. 83. Ploessl C., Pan A., Maples K.T., Lowe D.K. // Ann. Pharmacother. 2016. V. 50. P. 416–422. https://doi.org/10.1177/1060028016632013
  84. 84. Kalinovsky D.V., Kibardin A.V., Kholodenko I.V., Svirshchevskaya E.V., Doronin I.I., Konovalova M.V., Grechikhina M.V., Rozov F.N., Larin S.S., Deyev S.M., Kholodenko R.V. // J. Immunother. Cancer. 2022. V. 10. P. e004646. https://doi.org/10.1136/jitc-2022-004646
  85. 85. Kalinovsky D.V., Kholodenko I.V., Kibardin A.V., Doronin I.I., Svirshchevskaya E.V., Ryazantsev D.Y., Konovalova M.V., Rozov F.N., Larin S.S., Deyev S.M., Kholodenko R.V. // Int. J. Mol. Sci. 2023. V. 24. P. 1239. https://doi.org/10.3390/ijms24021239
  86. 86. Kalinovsky D.V., Kholodenko I.V., Svirshchevskaya E.V., Kibardin A.V., Ryazantsev D.Y., Rozov F.N., Larin S.S., Deyev S.M., Kholodenko R.V. // Curr. Issues Mol. Biol. 2023. V. 45. P. 8112–8125. https://doi.org/10.3390/cimb45100512
  87. 87. Liu K., Li M., Li Y., Li Y., Chen Z., Tang Y., Yang M., Deng G., Liu H. // Mol. Cancer. 2024. V. 23. P. 62. https://doi.org/10.1186/s12943-024-01963-7
  88. 88. Ma X., Wang M., Ying T., Wu Y. // Antib. Ther. 2024. V. 7. P. 114–122. https://doi.org/10.1093/abt/tbae005
  89. 89. Su Z., Xiao D., Xie F., Liu L., Wang Y., Fan S., Zhou X., Li S. // Acta Pharm. Sin. B. 2021. V. 11. P. 3889–3907. https://doi.org/10.1016/j.apsb.2021.03.042
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека