- PII
- S0132342325010074-1
- DOI
- 10.31857/S0132342325010074
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 51 / Issue number 1
- Pages
- 72-81
- Abstract
- Epigenetic modifications of histones in human, animal, and other eukaryotic cells play a crucial role in regulating gene expression. Histones can undergo a variety of post-translational modifications in different combinations, including methylation, acetylation, phosphorylation, and others at various amino acid residues, which determine the functional state of a given chromatin locus. Changes in epigenetic modifications accompany all normal and pathological cellular processes, including proliferation, differentiation, cancer transformation, and more. Currently, the development and application of new methods for analyzing the epigenome at the single-cell level, including in live cells, are particularly relevant. In this study, new sensor systems were developed for visualizing epigenetic modifications H3K9me3 (trimethylated Lys9), H3K9ac (acetylated Lys9), and the spatial colocalization of H3K9me3 with H3K9ac, based on fluorogenic dyes. The creation of these sensors involved the use of splitFAST system as well as the histone natural reader domains MPP8 and AF9. Adding the fluorogens HMBR and N871b to the cell medium allowed for the detection of clearly distinguishable fluorescence patterns in the green and red channels, respectively. We also performed the analysis of the obtained fluorescent images using the LiveMIEL (Live-cell Microscopic Imaging of Epigenetic Landscape) computational method. Clustering of the resulting data showed agreement with the expected class labels corresponding to the presence of H3K9me3, H3K9ac, and the spatial colocalization of H3K9me3 and H3K9ac in the nucleus. The developed sensors can be effectively used to study histone modifications in various cellular processes, as well as in investigating disease development mechanisms.
- Keywords
- генетически кодируемый сенсор H3K9me3 H3K9ac эпигенетическая регуляция splitFAST FAST флуороген-активирующие белки
- Date of publication
- 09.11.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 47
References
- 1. Millán-Zambrano G., Burton A., Bannister A.J., Schneider R. // Nat. Rev. Genet. 2022. V. 23. P. 563– 580. https://doi.org/10.1038/s41576-022-00468-7
- 2. Yun M., Wu J., Workman J.L., Li B. // Cell Res. 2011. V. 21. P. 564–578. https://doi.org/10.1038/cr.2011.42
- 3. Kungulovski G., Kycia I., Tamas R., Jurkowska R.Z., Kudithipudi S., Henry C., Reinhardt R., Labhart P., Jeltsch A. // Genome Res. 2014. V. 24. P. 1842–1853. https://doi.org/10.1101/gr.170985.113
- 4. Mauser R., Kungulovski G., Keup C., Reinhardt R., Jeltsch A. // Epigenetics Chromatin. 2017. V. 10. P. 45. https://doi.org/10.1186/s13072-017-0153-1
- 5. Delachat A.M.-F., Guidotti N., Bachmann A.L., Meireles-Filho A.C.A., Pick H., Lechner C.C., Deluz C., Deplancke B., Suter D.M., Fierz B. // Cell Chem. Biol. 2018. V. 25. P. 51–56.e6. https://doi.org/10.1016/j.chembiol.2017.10.008
- 6. Villaseñor R., Pfaendler R., Ambrosi C., Butz S., Giuliani S., Bryan E., Sheahan T.W., Hélène D. // Nat. Biotechnol. 2020. V. 38. P. 728–736. https://doi.org/10.1038/s41587-020-0434-2
- 7. Stepanov A.I., Shuvaeva A.A., Putlyaeva L.V., Lukyanov D.K., Galiakberova A.A., Gorbachev D.A., Maltsev D.I., Pronina V., Dylov D.V., Terskikh A.V., Lukyanov K.A., Gurskaya N.G. // Cell Mol. Life Sci. 2024. V. 81. P. 381. https://doi.org/10.1007/s00018-024-05359-0
- 8. Müller I., Moroni A.S., Shlyueva D., Sahadevan S., Schoof E.M., Radzisheuskaya A., Højfeldt J.W., Pedersen D.S., Trifonov M., Mikkelsen J.G. // Nat. Commun. 2021. V. 12. P. 3034. https://doi.org/10.1038/s41467-021-23308-4
- 9. Ng A.H.M., Khoshakhlagh P., Rojo Arias J.E., Pasquini G., Wang K., Swiersy A., Shipman S.L., Tian C., Miller D.M. // Nat. Biotechnol. 2021. V. 39. P. 510–519. https://doi.org/10.1038/s41587-020-0742-6
- 10. Tebo A.G., Gautier A. // Nat. Commun. 2019. V. 10. P. 2822. https://doi.org/10.1038/s41467-019-10855-0
- 11. Plamont M.-A., Billon-Denis E., Maurin S., Gauron C., Pimenta F.M., Specht C.G., Shi J., Lamberti A., Carlier A. // Proc. Natl. Acad. Sci. USA. 2016. V. 113. P. 497–502. https://doi.org/10.1073/pnas.1513094113
- 12. Povarova N.V., Zaitseva S.O., Baleeva N.S., Smirnov A.Y., Myasnyanko I.N., Zagudaylova M.B., Bozhanova N.G., Yegorov A.Y., Mikhaylov A.D. // Chemistry. 2019. V. 25. P. 9592–9596. https://doi.org/10.1002/chem.201901151
- 13. Benaissa H., Ounoughi K., Aujard I., Fischer E., Goïame R., Nguyen J., Tebo A.G., Pimentel C., Nicolas C. // Nat. Commun. 2021. V. 12. P. 6989. https://doi.org/10.1038/s41467-021-27334-0
- 14. Padeken J., Methot S.P., Gasser S.M. // Nat. Rev. Mol. Cell Biol. 2022. V. 23. P. 623–640. https://doi.org/10.1038/s41580-022-00483-w
- 15. Gates L.A., Shi J., Rohira A.D., Feng Q., Zhu B., Bedford M.T., Sagum C.A., Hewitt M.J., Cai Z. // J. Biol. Chem. 2017. V. 292. P. 14456–14472. https://doi.org/10.1074/jbc.m117.802074
- 16. Kokura K., Sun L., Bedford M.T., Fang J. // EMBO J. 2010. V. 29. P. 3673–3687. https://doi.org/10.1038/emboj.2010.239
- 17. Li Y., Wen H., Xi Y., Tanaka K., Wang H., Peng D., Ren Y., Li Z., Liu C. // Cell. 2014. V. 159. P. 558–571. https://doi.org/10.1016/j.cell.2014.09.049
- 18. Stepanov A.I., Besedovskaia Z.V., Moshareva M.A., Lukyanov K.A., Putlyaeva L.V. // Int. J. Mol. Sci. 2022. V. 23. P. 8988. https://doi.org/10.3390/ijms23168988
- 19. Stepanov A.I., Zhurlova P.A., Shuvaeva A.A., Sokolinskaya E.L., Gurskaya N.G., Lukyanov K.A., Putlyaeva L.V. // Biochem. Biophys. Res. Commun. 2023. V. 687. P. 149174. https://doi.org/10.1016/j.bbrc.2023.149174
- 20. Pedregosa F., Varoquaux G., Gramfort A., Michel V., Thirion B., Grisel O., Blondel M., Linh H., Poggio T. // J. Machine Learning Res. 2012. V. 12. P. 2825–2830. https://doi.org/10.48550/arXiv.1201.0490