ОБНБиоорганическая химия Russian Journal of Bioorganic Chemistry

  • ISSN (Print) 0132-3423
  • ISSN (Online) 1998-2860

Визуализация гистоновой модификации h3k9me3 в эмбриоидных тельцах с помощью генетически кодируемого флуоресцентного сенсора MPP8-Green

Код статьи
S0132342325010064-1
DOI
10.31857/S0132342325010064
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 51 / Номер выпуска 1
Страницы
63-71
Аннотация
Эпигенетические гистоновые модификации играют ключевую роль в дифференцировке стволовых клеток в различные типы клеток. Способность индуцированных плюрипотентных стволовых клеток (иПСК) к дифференцировке оценивается методом формирования эмбриоидных телец, который широко используется и распространен в исследованиях иПСК. В данной работе мы использовали стабильную линию иПСК с генетически кодируемым сенсором MPP8-Green для визуализации гистоновой модификации H3K9me3 при формировании эмбриоидных телец. Мы выявили две группы клеток на основе распределения H3K9me3 в сформировавшихся эмбриоидных тельцах, используя сенсор MPP8-Green. Данная работа демонстрирует, что сенсор MPP8-Green может быть использован для отслеживания динамики H3K9me3 во время спонтанной дифференцировки и формирования эмбриоидных телец. С использованием сенсора мы выявили две группы клеток с различным распределением H3K9me3 и показали возможность применения подобных генетически кодируемых инструментов для выявления различий в паттернах эпигенетических модификаций при спонтанной дифференцировке иПСК.
Ключевые слова
иПСК эмбриоидные тельца гистоны метилирование эпигенетическая регуляция флуоресцентная микроскопия
Дата публикации
09.11.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
50

Библиография

  1. 1. Bou Kheir T., Lund A.H. // Essays Biochem. 2010. V. 48. P. 107–120. https://doi.org/10.1042/bse0480107
  2. 2. Crouch J., Shvedova M., Thanapaul R.J.R.S., Botchkarev V., Roh D. // Cells. 2022. V. 11. P. 672. https://doi.org/10.3390/cells11040672
  3. 3. Jambhekar A., Dhall A., Shi Y. // Nat. Rev. Mol. Cell Biol. 2019. V. 20. P. 625–641. https://doi.org/10.1038/s41580-019-0151-1
  4. 4. Millán-Zambrano G., Burton A., Bannister A.J., Schneider R. // Nat. Rev. Genet. 2022. V. 23. P. 563– 580. https://doi.org/10.1038/s41576-022-00468-7
  5. 5. Bannister A.J., Kouzarides T. // Cell Res. 2011. V. 21. P. 381–395. https://doi.org/10.1038/cr.2011.22
  6. 6. Nicetto D., Zaret K.S. // Curr. Opin. Genet. Dev. 2019. V. 55. P. 1–10. https://doi.org/10.1016/j.gde.2019.04.013
  7. 7. Stepanov A.I., Besedovskaia Z.V., Moshareva M.A., Lukyanov K.A., Putlyaeva L.V. // Int. J. Mol. Sci. 2022. V. 23. P. 8988. https://doi.org/10.3390/ijms23168988
  8. 8. Yun M., Wu J., Workman J.L., Li B. // Cell Res. 2011. V. 21. P. 564–578. https://doi.org/10.1038/cr.2011.42
  9. 9. Sánchez O.F., Mendonca A., Min A., Liu J., Yuan C. // ACS Omega. 2019. V. 4. P. 13250–13259. https://doi.org/10.1021/acsomega.9b01413
  10. 10. Brickman J.M., Serup P. // Wiley Interdiscip. Rev. Dev. Biol. 2017. V. 6. https://doi.org/10.1002/wdev.259
  11. 11. Dar A., Gerecht-Nir S., Itskovitz-Eldor J. // Chapter 27. Human Vascular Progenitor Cells. In: Essentials of Stem Cell Biology (Second Edition) / Eds. Lanza R., Gearhart J., Hogan B., Melton D., Pedersen R., Thomas E.D., Thomson J., Wilmut I. San Diego: Academic Press, 2009. P. 227–232.
  12. 12. Stepanov A.I., Shuvaeva A.A., Putlyaeva L.V., Lukyanov D.K., Galiakberova A.A., Gorbachev D.A., Maltsev D.I., Pronina V., Dylov D.V., Terskikh A.V., Lukyanov K.A., Gurskaya N.G. // Cell Mol. Life Sci. 2024. V. 81. P. 381. https://doi.org/10.1007/s00018-024-05359-0
  13. 13. Müller I., Moroni A.S., Shlyueva D., Sahadevan S., Schoof E.M., Radzisheuskaya A., Højfeldt J.W., Tatar T., Koche R.P., Huang C., Helin K. // Nat. Commun. 2021. V. 12. P. 3034. https://doi.org/10.1038/s41467-021-23308-4
  14. 14. Cerneckis J., Cai H., Shi Y. // Signal Transduct. Target Ther. 2024. V. 9. P. 112. https://doi.org/10.1038/s41392-024-01809-0
  15. 15. Lin Y., Chen G. // Embryoid body formation from human pluripotent stem cells in chemically defined E8 media. 2014. In: StemBook [Internet]. Cambridge (MA): Harvard Stem Cell Institute, 2008.
  16. 16. Stepanov A.I., Zhurlova P.A., Shuvaeva A.A., Sokolinskaya E.L., Gurskaya N.G., Lukyanov K.A., Putlyaeva L.V. // Biochem. Biophys. Res. Commun. 2023. V. 687. P. 149174. https://doi.org/10.1016/j.bbrc.2023.149174
  17. 17. Farhy C., Hariharan S., Ylanko J., Orozco L., Zeng F.Y., Pass I., Ugarte F., Forsberg E.C., Huang C.T., Andrews D.W., Terskikh A.V. // Elife. 2019. V. 8. P. e49683. https://doi.org/10.7554/eLife.49683
  18. 18. Becker J.S., Nicetto D., Zaret K.S. // Trends Genet. 2016. V. 32. P. 29–41. https://doi.org/10.1016/j.tig.2015.11.001
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека