RAS BiologyБиоорганическая химия Russian Journal of Bioorganic Chemistry

  • ISSN (Print) 0132-3423
  • ISSN (Online) 1998-2860

Comparison of methods for rapid determination of cholesterol concentration in human sperm membrane in clinical laboratory practice

PII
S0132342325010047-1
DOI
10.31857/S0132342325010047
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 51 / Issue number 1
Pages
43-50
Abstract
This study proposes a rapid method for the determination of cholesterol in human sperm membranes suitable for use in the clinical laboratory. Four physicochemical methods for the quantitative measurement of cholesterol were selected for comparison: the enzymatic cholesterol assay, the Liberman–Burkhardt method, the infrared spectroscopy and the high-performance liquid chromatography. The following cholesterol concentrations were obtained: 1.0 ± 0.3, 1.32 ± 0.15, 5.1 ± 1.8, and 1.53 ± 0.18 nmol/106 cells, respectively. The following criteria of the applicability of the method were chosen: the amount of material to be analyzed, determined by the number of spermatozoa in the seminal fluid of a single ejaculate of a patient, the number of sample preparation steps that account for the systematic error of the analysis, and the total time of the analysis. The infrared spectroscopy method requires at least 20 mg of cellular sample, which is unrealizable for estimating cholesterol in sperm membranes of a single patient. The Liberman–Burkhardt and high-performance liquid chromatography methods require multi-step sample preparation and the use of aggressive volatile reagents. In turn, the enzymatic assay is optimal for the considered criteria, it allows rapid analysis of cholesterol in the sperm membrane of a single patient, and is suitable for use within the in vitro fertilization laboratory.
Keywords
холестерин сперматозоид мембрана хроматография ИК-спектроскопия реакция Либермана–Бурхарда
Date of publication
09.11.2025
Year of publication
2025
Number of purchasers
0
Views
45

References

  1. 1. Marquardt D., Kučerka N., Wassall S.R., Harroun T.A., Katsaras J. // Chem. Phys. Lipids. 2016. V. 199. P. 17–25. https://doi.org/10.1016/j.chemphyslip.2016.04.001
  2. 2. Subczynski W.K., Pasenkiewicz-Gierula M., Widomska J., Mainali L., Raguz M. // Cell Biochem. Biophys. 2017. V. 75. P. 369–385. https://doi.org/10.1007/s12013-017-0792-7
  3. 3. Leonard A., Escrive C., Laguerre M., Pebay-Peyroula E., Neri W., Pott T., Katsaras J., Dufourc E.J. // Langmuir. 2001. V. 17. P. 2019–2030. https://doi.org/10.1021/la001382p
  4. 4. Kessel A., Ben-Tal N., May S. // Biophys. J. 2001. V. 81. P. 643–658. https://doi.org/10.1016/s0006-3495 (01)75729-3
  5. 5. Harroun T.A., Katsaras J., Wassall S.R. // Biochemistry. 2006. V. 45. P. 1227–1233. https://doi.org/10.1021/bi0520840
  6. 6. Harroun T.A., Katsaras J., Wassall S.R. // Biochemistry. 2008. V. 47. P. 7090–7096. https://doi.org/10.1021/bi800123b
  7. 7. Armstrong C.L., Marquardt D., Dies H., Kučerka N., Yamani Z., Harroun T.A., Katsaras J., Shi A.C., Rheinstädter M.C. // PLoS One. 2013. V. 8. P. e66162. https://doi.org/10.1371/journal.pone.0066162
  8. 8. Armstrong C.L., Häussler W., Seydel T., Katsaras J., Rheinstädter M.C. // Soft Matter. 2014. V. 10. P. 2600–2611. https://doi.org/10.1039/c3sm51757h
  9. 9. Armstrong C.L., Barrett M.A., Hiess A., Salditt T., Katsaras J., Shi A.C., Rheinstädter M.C. // Eur. Biophys. J. 2012. V. 41. P. 901–913. https://doi.org/10.1007/s00249-012-0826-4
  10. 10. Kucerka N., Perlmutter J.D., Pan J., Tristram-Nagle S., Katsaras J., Sachs J.N. // Biophys. J. 2008. V. 95. P. 2792−2805. https://doi.org/10.1529/biophysj.107.122465
  11. 11. Keller F., Heuer A. // Soft Matter. 2021. V. 17. P. 6098− 6108. https://doi.org/10.1039/d1sm00459j
  12. 12. Leftin A., Molugu T.R., Job C., Beyer K., Brown M.F. // Biophys. J. 2014. V. 107. P. 2274−2286. https://doi.org/10.1016/j.bpj.2014.07.044
  13. 13. Rog T., Pasenkiewicz-Gierula M. // FEBS Lett. 2001. V. 502. P. 68–71. https://doi.org/10.1016/s0014-5793 (01)02668-0
  14. 14. Dahley C., Garessus E.D.G., Ebert A., Goss K.U. // Biochim. Biophys. Acta Biomembr. 2022. V. 1864. P. 183953. https://doi.org/10.1016/j.bbamem.2022.183953
  15. 15. Khatibzadeh N., Gupta S., Farrell B., Brownell W.E., Anvari B. // Soft Matter. 2012. V. 8. P. 8350−8360. https://doi.org/10.1039/c2sm25263e
  16. 16. Yeagle P.L. // Biochimie. 1991. V. 73. P. 1303–1310. https://doi.org/10.1016/0300-9084 (91)90093-g
  17. 17. Jafurulla M., Chattopadhyay A. // Methods Mol. Biol. 2017. V. 1583. P. 21–39. https://doi.org/10.1007/978-1-4939-6875-6_3
  18. 18. Grouleff J., Irudayam S.J., Skeby K.K., Schiøtt B. // Biochim. Biophys. Acta. 2015. V. 1848. P. 1783–1795. https://doi.org/10.1016/j.bbamem.2015.03.029
  19. 19. Epand R.M. // In: The Structure of Biological Membrane / Ed. Yeagle P.L. CRC Press, Boca Raton, 2005. P. 499–509.
  20. 20. Reichow S.L., Gonen T. // Curr. Opin. Struct. Biol. 2009. V. 19. P. 560–565. https://doi.org/10.1016/j.sbi.2009.07.012
  21. 21. Tong J., Briggs M.M., McIntosh T.J. // Biophys. J. 2012. V. 103. P. 1899–1908. https://doi.org/10.1016/j.bpj.2012.09.025
  22. 22. Tong J., Canty J.T., Briggs M.M., McIntosh T.J. // Exp. Eye Res. 2013. V. 113. P. 32–40. https://doi.org/10.1016/j.exer.2013.04.022
  23. 23. Fantini J., Epand R.M., Barrantes F.J. // Adv. Exp. Med. Biol. 2019. V. 1135. P. 3–25. https://doi.org/10.1007/978-3-030-14265-0_1
  24. 24. Fantini J., Di Scala C., Baier C.J., Barrantes F.J. // Chem. Phys. Lipids. 2016. V. 199. P. 52–60. https://doi.org/10.1016/j.chemphyslip.2016.02.009
  25. 25. Hedger G., Koldsø H., Chavent M., Siebold C., Rohatgi R., Sansom M.S.P. // Structure. 2019. V. 27. P. 549–559.e2. https://doi.org/10.1016/j.str.2018.11.003
  26. 26. George K.S., Wu S. // Toxicol. Appl. Pharmacol. 2012. V. 259. P. 311–319. https://doi.org/10.1016/j.taap.2012.01.007
  27. 27. Phillips M.C. // J Biol Chem. 2014. V. 289. P. 24020– 24029. https://doi.org/10.1074/jbc.r114.583658
  28. 28. Yancey P.G., Bortnick A.E., Kellner-Weibel G., de la LleraMoya M., Phillips M.C., Rothblat G.H. // Arterioscler. Thromb Vasc. Biol. 2003. V. 23. P. 712–719. https://doi.org/10.1161/01.atv.0000057572.97137.dd
  29. 29. Rosenson R.S., Brewer H.B., Jr., Davidson W.S., Fayad Z.A., Fuster V., Goldstein J., Hellerstein M., Jiang X.C., Phillips M.C., Rader D.J., Remaley A.T., Rothblat G.H., Tall A.R., Yvan-Charvet L. // Circulation. 2012. V. 125. P. 1905–1919. https://doi.org/10.1161/circulationaha.111.066589
  30. 30. Low H., Hoang A., Sviridov D. // J. Vis. Exp. 2012. V. 61. P. e3810. https://doi.org/10.3791/3810
  31. 31. Sugkraroek P., Kates M., Leader A., Tanphaichitr N. // Fertil. Steril. 1991. V. 55. P. 820–827.
  32. 32. Force A., Grizard G., Giraud M.N., Motta C., Sion B., Boucher D. // Int. J. Androl. 2001. V. 24. P. 327–334. https://doi.org/10.1046/j.1365-2605.2001.00309.x
  33. 33. Folch J., Lees M., Sloane-Stanely G.M. // J. Biol. Chem. 1957. V. 226. P. 497–509.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library