RAS BiologyБиоорганическая химия Russian Journal of Bioorganic Chemistry

  • ISSN (Print) 0132-3423
  • ISSN (Online) 1998-2860

Characterization of combined effects of reactive oxygen metabolites, complement system, and antimicrobial peptides In Vitro

PII
S0132342325010016-1
DOI
10.31857/S0132342325010016
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 51 / Issue number 1
Pages
3-18
Abstract
Phagocytes activation results in the production of reactive oxygen metabolites (ROM) exerting antimicrobial and host-damaging activity. Although the main pool of papers shows their potentiating action on a key humoral nexus of innate immunity, complement system, the data are controversial. Combined action of ROM with antimicrobial peptides of phagocytes also remains poorly characterized. We have investigated the influence of oxidative burst products on complement activation in different in vitro models. Hydrogen peroxide, including that in medium with Fe-EDTA did not affect parameters of complement activity in human blood serum. HOCl in millimolar concentrations stimulated production of C3a and C5a anaphylatoxins in 80% serum, the effect was inhibited by EDTA. We have identified bivalent ions-independent C5 cleavage in the presence of 16 mM HOCl. At the same time, HOCl served as an inhibitor of the alternative complement pathway in the model of surface-associated activation on rabbit erythrocytes in 5% serum. It inhibited production of C3a (IC50 ~ 4 mM) and C5a as well as serum hemolytic activity (IC50 ~ 0.2 mM); the inhibition of C5a generation was less pronounced in the presence of 4–16 mM HOCl. Decrease in anaphylatoxins generation was also observed in the system with zymosan in 5% serum. Under similar conditions but without activating surfaces, moderate HOCl concentrations enhanced C3a and C5a accumulation; EDTA inhibited this effect completely (C3a) or partially (C5a). Finally, in 70% serum, 16 mM HOCl enhanced the anaphylatoxins accumulation but in the presence of zymosan it inhibited this process almost completely. We hypothesize that HOCl can attack the thioester bond in C3 protein to form C3(HOCl) adduct which is capable of fluid-phase convertases formation; however, the attack of C3b can prevent its covalent fixation on membranes and blocks the complement amplification loop. Besides, we have demonstrated the additive character of the combined action of HOCl with antimicrobial peptides (LL-37 cathelicidin and α-defensins) towards Listeria monocytogenes and Escherichia coli. The data obtained precise the picture of the interaction between bactericidal factors of phagocytes and complement as key participants of the immune defense and host damage.
Keywords
активные метаболиты кислорода хлорноватистая кислота комплемент антимикробные пептиды фагоциты нейтрофилы воспаление C3 анафилатоксины
Date of publication
09.11.2025
Year of publication
2025
Number of purchasers
0
Views
42

References

  1. 1. Uribe-Querol E., Rosales C. // Front. Immunol. 2020. V. 11. P. 1066. https://doi.org/10.3389/fimmu.2020.01066
  2. 2. Burn G.L., Foti A., Marsman G., Patel D.F., Zychlinsky A. // Immunity. 2021. V. 54. P. 1377–1391. https://doi.org/10.1016/j.immuni.2021.06.006
  3. 3. Katsuyama M. // J. Pharmacol. Sci. 2010. V. 114. P. 134–146. https://doi.org/10.1254/jphs.10r01cr
  4. 4. Zheng M., Liu Y., Zhang G., Yang Z., Xu W., Chen Q. // Antioxidants (Basel). 2023. V. 12. P. 1675. https://doi.org/10.3390/antiox12091675
  5. 5. Andrés C.M.C., Pérez de la Lastra J.M., Juan C.A., Plou F.J., Pérez-Lebeña E. // Stresses. 2022. V. 2. P. 256–274. https://doi.org/10.3390/stresses2030019
  6. 6. Aratani Y. // Arch. Biochem. Biophys. 2018. V. 640. P. 47–52. https://doi.org/10.1016/j.abb.2018.01.004
  7. 7. Arnhold J. // Int. J. Mol. Sci. 2020. V. 21. P. 8057. https://doi.org/10.3390/ijms21218057
  8. 8. Pattison D.I., Davies M.J. // Chem. Res. Toxicol. 2001. V. 14. P. 1453–1464. https://doi.org/10.1021/tx0155451
  9. 9. Weiss S.J. // N. Engl J. Med. 1989. V. 320. P. 365–376. https://doi.org/10.1056/NEJM198902093200606
  10. 10. Huan Y., Kong Q., Mou H., Yi H. // Front. Microbiol. 2020. V. 11. P. 582779. https://doi.org/10.3389/fmicb.2020.582779
  11. 11. Lehrer R. I., Lu W. // Immunol. Rev. 2012. V. 245. P. 84–112. https://doi.org/10.1111/j.1600-065X.2011.01082.x
  12. 12. Ridyard K.E., Overhage J. // Antibiotics (Basel). 2021. V. 10. P. 650. https://doi.org/10.3390/antibiotics10060650
  13. 13. Ricklin D., Reis E.S., Mastellos D.C., Gros P., Lambris J.D. // Immunol. Rev. 2016. V. 274. P. 33–58. https://doi.org/10.1111/imr.12500
  14. 14. Tack B.F., Harrison R.A., Janatova J., Thomas M.L., Prahl J.W. // Proc. Natl. Acad. Sci. USA. 1980. V. 77. P. 5764–5768. https://doi.org/10.1073/pnas.77.10.5764
  15. 15. Law S.K., Dodds A.W. // Protein. Sci. 1997. V. 6. P. 263– 274. https://doi.org/10.1002/pro.5560060201
  16. 16. Shokal U., Eleftherianos I. // Front. Immunol. 2017. V. 8. P. 759. https://doi.org/10.3389/fimmu.2017.00759
  17. 17. Forneris F., Ricklin D., Wu J., Tzekou A., Wallace R.S., Lambris J.D., Gros P. // Science. 2010. V. 330. P. 1816– 1820. https://doi.org/10.1126/science.1195821
  18. 18. Fearon D.T., Austen K.F. // J. Exp. Med. 1975. V. 142. P. 856–863. https://doi.org/10.1084/jem.142.4.856
  19. 19. Lachmann P.J., Lay E., Seilly D.J. // FASEB J. 2018. V. 32. P. 123–129. https://doi.org/10.1096/fj.201700734
  20. 20. Xie C.B., Jane-Wit D., Pober J.S. // Am. J. Pathol. 2020. V. 190. P. 1138–1150. https://doi.org/10.1016/j.ajpath.2020.02.006
  21. 21. D’Autréaux B., Toledano M.B. // Nat. Rev. Mol. Cell Biol. 2007. V. 8. P. 813–824. https://doi.org/10.1038/nrm2256
  22. 22. Ricklin D., Hajishengallis G., Yang K., Lambris J.D. // Nat. Immunol. 2010. V. 11. P. 785–797. https://doi.org/10.1038/ni.1923
  23. 23. Hawksworth O.A., Coulthard L.G., Woodruff T.M. // Mol. Immunol. 2017. V. 84. P. 17–25. https://doi.org/10.1016/j.molimm.2016.11.010
  24. 24. Alfadda A.A., Sallam R.M. // J. Biomed. Biotechnol. 2012. P. 936486. https://doi.org/10.1155/2012/936486
  25. 25. Gierlikowska B., Stachura A., Gierlikowski W., Demkow U. // Front. Pharmacol. 2021. V. 12. P. 666732. https://doi.org/10.3389/fphar.2021.666732
  26. 26. Mastellos D.C., Hajishengallis G., Lambris J.D. // Nat. Rev. Immunol. 2024. V. 24. P. 118–141. https://doi.org/10.1038/s41577-023-00926-1
  27. 27. Goldstein I.M., Weissmann G. // J. Immunol. 1974. V. 113. P. 1583–1588. https://doi.org/10.4049/jimmunol.113.5.1583
  28. 28. Johnson U., Ohlsson K., Olsson I. // Scand. J. Immunol. 1976. V. 5. P. 421–426. https://doi.org/10.1111/j.1365-3083.1976.tb00296.x
  29. 29. Orr F.W., Varani J., Kreutzer D.L., Senior R.M., Ward P.A. // Am. J. Pathol. 1979. V. 94. P. 75–83.
  30. 30. Taylor J.C., Crawford I.P., Hugli T.E. // Biochemistry. 1977. V. 16. P. 3390–3396. https://doi.org/10.1021/bi00634a016
  31. 31. Venge P., Olsson I. // J. Immunol. 1975. V. 115. P. 1505–1508. https://doi.org/10.4049/jimmunol.115.6.1505
  32. 32. Vogt W. // Immunobiology. 2000. V. 201. P. 470–477. https://doi.org/10.1016/S0171-2985 (00)80099-6
  33. 33. Ward P.A., Hill J.H. // J. Immunol. 1970. V. 104. P. 535– 543. https://doi.org/10.4049/jimmunol.104.3.535
  34. 34. Кренев И.А., Берлов М.Н., Умнякова Е.С. // Иммунология. 2021. Т. 42. С. 426–433. https://doi.org/10.33029/0206-4952-2021-42-4-426-433
  35. 35. van den Berg R.H., Faber-Krol M.C., van Wetering S., Hiemstra P.S., Daha M.R. // Blood. 1998. V. 92. P. 3898–3903. https://doi.org/10.1182/blood.V92.10.3898
  36. 36. Groeneveld T.W., Ramwadhdoebé T.H., Trouw L.A., van den Ham D.L., van der Borden V., Drijfhout J.W., Hiemstra P.S., Daha M.R., Roos A. // Mol. Immunol. 2007. V. 44. P. 3608–3614. https://doi.org/10.1016/j.molimm.2007.03.003
  37. 37. Nordahl E.A., Rydengård V., Nyberg P., Nitsche D.P., Mörgelin M., Malmsten M., Björck L., Schmidtchen A. // Proc. Natl. Acad. Sci. USA. 2004. V. 101. P. 16879– 16884. https://doi.org/10.1073/pnas.0406678101
  38. 38. Sonesson A., Ringstad L., Nordahl E.A., Malmsten M., Mörgelin M., Schmidtchen A. // Biochim. Biophys. Acta. 2007. V. 1768. P. 346–353. https://doi.org/10.1016/j.bbamem.2006.10.017
  39. 39. Pasupuleti M., Walse B., Nordahl E.A., Mörgelin M., Malmsten M., Schmidtchen A. // J. Biol. Chem. 2007. V. 282. P. 2520–2528. https://doi.org/10.1074/jbc.M607848200
  40. 40. Shingu M., Nobunaga M. // Am. J. Pathol. 1984. V. 117. P. 201–206.
  41. 41. Shingu M., Nonaka S., Nishimukai H., Nobunaga M., Kitamura H., Tomo-Oka K. // Clin. Exp. Immunol. 1992. V. 90. P. 72–78. https://doi.org/10.1111/j.1365-2249.1992.tb05834.x
  42. 42. Vogt W., Damerau B., von Zabern I., Nolte R., Brunahl D. // Mol. Immunol. 1989. V. 26. P. 1133–1142. https://doi.org/10.1016/0161-5890 (89)90057-6
  43. 43. Vogt W., Zimmermann B., Hesse D., Nolte R. // Mol. Immunol. 1992. V. 29. P. 251–256. https://doi.org/10.1016/0161-5890 (92)90106-8
  44. 44. Vogt W., Hesse D. // Immunobiology. 1992. V. 184. P. 384–391. https://doi.org/10.1016/S0171-2985 (11)80595-4
  45. 45. Vogt W. // Immunobiology. 1996. V. 195. P. 334–346. https://doi.org/10.1016/S0171-2985 (96)80050-7
  46. 46. Clark R.A., Klebanoff S.J. // J. Clin. Invest. 1979. V. 64. P. 913–920. https://doi.org/10.1172/JCI109557
  47. 47. Coble B.I., Dahlgren C., Hed J., Stendahl O. // Biochim. Biophys. Acta. 1984. V. 802. P. 501–505. https://doi.org/10.1016/0304-4165 (84)90369-6
  48. 48. Miller T.E. // J. Bacteriol. 1969. V. 98. P. 949–955. https://doi.org/10.1128/jb.98.3.949-955.1969
  49. 49. Lichtenstein A.K., Ganz T., Selsted M.E., Lehrer R.I. // Cell. Immunol. 1988. V. 114. P. 104–116. https://doi.org/10.1016/0008-8749 (88)90258-4
  50. 50. Vissers M.C., Winterbourn C.C. // Biochem. J. 1987. V. 245. P. 277–280. https://doi.org/10.1042/bj2450277
  51. 51. Shao B., Belaaouaj A., Verlinde C.L., Fu X., Heinecke J.W. // J. Biol. Chem. 2005. V. 280. P. 29311– 29321. https://doi.org/10.1074/jbc.M504040200
  52. 52. Hawkins C.L., Davies M.J. // Chem. Res. Toxicol. 2005. V. 18. P. 1600–1610. https://doi.org/10.1021/tx050207b
  53. 53. Krishna H., Avinash K., Shivakumar A., Al-Tayar N.G.S., Shrestha A.K. // Spectrochim. Acta A Mol. Biomol. Spectrosc. 2021. V. 251. P. 119358. https://doi.org/10.1016/j.saa.2020.119358
  54. 54. Peffault de Latour R., Brodsky R.A., Ortiz S., Risitano A.M., Jang J.H., Hillmen P., Kulagin A.D., Kulasekararaj A.G., Rottinghaus S.T., Aguzzi R., Gao X., Wells R.A., Szer J. // Br. J. Haematol. 2020. V. 191. P. 476–485. https://doi.org/10.1111/bjh.16711
  55. 55. Forman H.J., Bernardo A., Davies K.J. // Arch. Biochem. Biophys. 2016. V. 603. P. 48–53. https://doi.org/10.1016/j.abb.2016.05.005
  56. 56. Pravda J. // Mol. Med. 2020. V. 26. P. 41. https://doi.org/10.1186/s10020-020-00165-3
  57. 57. Lipcsey M., Bergquist M., Sirén R., Larsson A., Huss F., Pravda J., Furebring M., Sjölin J., Janols H. // Biomedicines. 2022. V. 10. P. 848. https://doi.org/10.3390/biomedicines10040848
  58. 58. Huber-Lang M., Ekdahl K.N., Wiegner R., Fromell K., Nilsson B. // Semin. Immunopathol. 2018. V. 40. P. 87– 102. https://doi.org/10.1007/s00281-017-0646-9
  59. 59. Weiss S.J., Peppin G., Ortiz X., Ragsdale C., Test S.T. // Science. 1985. V. 227. P. 747–749. https://doi.org/10.1126/science.2982211
  60. 60. Peppin G.J., Weiss S.J. // Proc. Natl. Acad. Sci. USA. 1986. V. 83. P. 4322–4326. https://doi.org/10.1073/pnas.83.12.4322
  61. 61. Fu X., Kassim S.Y., Parks W.C., Heinecke J.W. // J. Biol. Chem. 2001. V. 276. P. 41279–41287. https://doi.org/10.1074/jbc.M106958200
  62. 62. Wang Y., Rosen H., Madtes D.K., Shao B., Martin T.R., Heinecke J.W., Fu X. // J. Biol. Chem. 2007. V. 282. P. 31826–31834. https://doi.org/10.1074/jbc.M704894200
  63. 63. Siddiqui T., Zia M.K., Ali S.S., Rehman A.A., Ahsan H., Khan F.H. // Arch. Physiol. Biochem. 2016. V. 122. P. 1–7. https://doi.org/10.3109/13813455.2015.1115525
  64. 64. DiScipio R.G., Smith C.A., Muller-Eberhard H.J., Hugli T.E. // J. Biol. Chem. 1983. V. 258. P. 10629–10636. https://doi.org/10.1016/S0021-9258 (17)44503-0
  65. 65. Zharkova M.S., Komlev A.S., Filatenkova T.A., Sukhareva M.S., Vladimirova E.V., Trulioff A.S., Orlov D.S., Dmitriev A.V., Afinogenova A.G., Spiridonova A.A., Shamova O.V. // Pharmaceutics. 2023. V. 15. P. 291. https://doi.org/10.3390/pharmaceutics15010291
  66. 66. Krenev I.A., Umnyakova E.S., Eliseev I.E., Dubrovskii Y.A., Gorbunov N.P., Pozolotin V.A., Komlev A.S., Panteleev P.V., Balandin S.V., Ovchinnikova T.V., Shamova O.V., Berlov M.N. // Mar. Drugs. 2020. V. 18. P. 631. https://doi.org/10.3390/md18120631
  67. 67. Umnyakova E.S., Gorbunov N.P., Zhakhov A.V., Krenev I.A., Ovchinnikova T.V., Kokryakov V.N., Berlov M.N. // Mar. Drugs. 2018. V. 16. P. 480. https://doi.org/10.3390/md16120480
  68. 68. Fearon D.T., Austen K.F. // Proc. Natl. Acad. Sci. USA. 1977. V. 74. P. 1683-1687. https://doi.org/10.1073/pnas.74.4.1683
  69. 69. Fields G.B., Noble R.L. // Int. J. Pept. Protein Res. 1990. V. 35. P. 161–214. https://doi.org/10.1111/j.1399-3011.1990.tb00939.x
  70. 70. Pozolotin V.A., Umnyakova E.S., Kopeykin P.M., Komlev A.S., Dubrovskii Y.A., Krenev I.A. Shamova O.V., Berlov M.N. // Russ. J. Bioorg. Chem. 2021. V. 47. P. 741–748.] https://doi.org/10.1134/S1068162021030158
  71. 71. Smith B.J. // Methods Mol. Biol. 1984. V. 1. P. 63–73. https://doi.org/10.1385/0-89603-062-8:63
  72. 72. Berlov M.N., Korableva E.S., Andreeva Y.V., Ovchinnikova T.V., Kokryakov V.N. // Biochemistry (Moscow). 2007. V. 72. P. 445–451. https://doi.org/10.1134/S0006297907040128
  73. 73. Świerczyńska M., Słowiński D., Michalski R., Romański J., Podsiadły R. // Molecules. 2023. V. 28. Р. 6055. https://doi.org/10.3390/molecules28166055
  74. 74. A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, 2020. https://www.R-project.org/
  75. 75. Wickham H. // ggplot2: Elegant Graphics for Data Analysis. New York: Springer-Verlag, 2016.
  76. 76. Kassambara A. //ggpubr: ‘ggplot2’ Based Publication Ready Plots. R package version 0.6.0, 2023. https://rpkgs.datanovia.com/ggpubr/
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library