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ВВЕДЕНИЕ

Несмотря на развитие в последние годы новых 
высокоселективных методов терапевтической 
онкологии, традиционная химиотерапия до сих 
пор остается одним из главных подходов к ле- 
чению злокачественных новообразований. В 
частности, цис-диамминдихлорплатина (II) (цис- 

платин) входит в число препаратов первого ряда 
при лечении рака яичника, яичка, мочевого пу- 
зыря, плоскоклеточного рака головы и шеи, герми- 
ногенных опухолей и некоторых других онколо- 
гических заболеваний [1, 2]. В связи с высокой 
эффективностью противоопухолевого действия 
соединений платины разработка новых средств на 
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Полиоксометаллаты платины – комплексы Pt (IV), содержащие объемные кластерные лиганды. 
Ранее было показано, что полиоксониобат платины структуры [(Nb6O19)2{Pt(OH)2}2]12− (Pt-PON1), 
содержащий два платиновых центра, способен образовывать ковалентный конъюгат с ДНК. В 
настоящей работе исследована структурная стабильность Pt-PON1 и его конъюгата с гуанином по  
положению N7, цитотоксичность этого соединения и его накопление клетками. Квантово-механи- 
ческое моделирование показало, что комплекс Pt-PON1 нестабилен вне кристаллической решетки, 
а его конъюгат с гуанином должен достаточно легко претерпевать структурную перестройку. 
Наблюдалось значительное снижение выживаемости Escherichia coli штаммов XL1-Blue и DH5α 
и клеток человека линий HEK293T и MCF-7 в присутствии Pt-PON1 уже в концентрации 20 мкМ, 
однако при более высоких концентрациях соединение было малорастворимо в биологически 
совместимых средах. Методом атомно-эмиссионной спектроскопии по Pt и Nb показано, что Pt-PON1 
эффективно поглощается клетками человека в стехиометрии, соответствующей исходному комплексу. 
Таким образом, полиоксометаллаты платины при условии решения проблемы растворимости могут 
рассматриваться как перспективные противоопухолевые агенты.
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их основе активно продолжается [3–6]. Поэтому 
поиск новых классов цитотоксичных платиновых 
комплексов, которые по своим биологическим 
свойствам отличаются от уже существующих 
и перспективны для разработки противоопухо- 
левых средств, представляется весьма актуальной 
задачей. Так, активно исследуются соединения 
платины (IV), которые стабильны во внеклеточной 
среде, но внутри клеток могут восстанавливаться 
до высокореактивных комплексов платины (II) 
[7–9].

Полиоксометаллаты – анионные многоцент- 
ровые группировки переходных металлов – в 
последнее время вызывают значительный ин- 
терес в фармакологии [10–12]. Показано их бак- 
терицидное и противовирусное действие [13– 
16], цитотоксичность в отношении раковых кле- 
ток [17, 18], ингибирование ряда метаболических 
и регуляторных ферментов [19] и подавление 
амилоидогенеза [20]. С точки зрения терапии онко- 
логических заболеваний особый интерес вызы- 
вают пути проникновения полиоксометаллатов 
в клетку, отличные от механизмов большинства 
низкомолекулярных соединений, и медленное 
выведение из клеток, что затрудняет приобрете- 
ние лекарственной устойчивости. В настоящее 
время активно развиваются способы синтеза 
разнообразных полиоксометаллатных кластеров, 
в том числе конъюгированных с биологически 
активными органическими лигандами [21, 22].

Несмотря на большой интерес как к плати- 
новым агентам, так и к полиоксометаллатам, 
цитотоксичное действие полиоксометаллатных 
соединений, содержащих атомы Pt, практически 
не изучалось [23]. Ранее было показано, что 
соединение структуры [(Nb6O19)2{Pt(OH)2}2]12− 
(Pt-PON1, рис. 1а), содержащее два атома Pt (IV) 
и два координирующих кластера типа Линквиста 
[24], достаточно эффективно образует ковалент- 
ные аддукты с остатками гуанина в ДНК [25]. Од- 
нако структура таких аддуктов и биологические по- 
следствия их присутствия оставались неизучен- 
ными.

Целью данной работы были компьютерное 
моделирование образования аддуктов Pt-PON1 с 
ДНК, оценка цитотоксичности этого соединения 
для клеток бактерий и человека и исследование 
его накопления в клетке.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Квантово-механическое моделирование 
образования аддукта полиоксониобата пла- 
тины с гуанином. Ранее было показано, что 
Pt-PON1 образует ковалентные аддукты с осно- 
ванием Gua в составе ДНК, предположительно 
по механизму замещения гидроксигруппы при 
центральном атоме Pt нуклеофильной группой 
Gua аналогично реакции с цис-диаммин- 
диакваплатиной [Pt(NH3)2(OH2)2]2+ [25, 26]. По 
данным масс-спектрометрического анализа, ад- 
дукты были легче ожидаемого комплекса Pt-PON1 
с гидроксильным лигандом, замененным на Gua. В 
связи с этим было выдвинуто предположение, что 
после связывания с ДНК комплекс Pt-PON1 может 
подвергаться реорганизации, приводящей к по- 
тере одного атома Pt и перестройке координацион- 
ной сферы оставшегося атома аналогично тому, 
как в водном растворе объемные полиоксо- 
металлатные лиганды замещаются молекулами 
воды с переходом бицентрового комплекса 
[(Nb6O19)2{Pt(OH)2}2]12− в моноцентровый 
[Pt(Nb6O19)2]12− (Pt-PON2) [24] (рис. 1a, 1б). Сам 
по себе комплекс Pt-PON2, очевидно, не может 
реагировать с ДНК ввиду занятости всех валент- 
ных связей металлоцентра.

Для интерпретации возможной природы ад- 
дукта Pt-PON с ДНК в рамках настоящей ра- 
боты исследовали структурную стабильность 
и энергетические характеристики соединений 
платины методом теории функционала плотности 
в программном пакете Gaussian16. При попытке 
получения изменения энергии Гиббса для ре- 
акции перехода Pt-PON1 в смесь Pt-PON2 и 
Pt(OH)4  ×  2 H2O (рис. 1а, 1б) путем оптимизации 
структур и расчета колебательного спектра при 
298  К такие энергии были получены для Pt-
PON2 и сольватированного гидроксида платины, 
однако полная оптимизация Pt-PON1 приводила 
к разрыву связи Pt–O. Одной из возможных при- 
чин такого поведения может быть то, что старто- 
вые координаты атомов структуры в кристал- 
лической упаковке [24] находятся вдали от локаль- 
ного минимума энергии системы в изолирован- 
ной молекуле. Предварительное использование 
полуэмпирических методов PM6 и PM7, реали- 
зованных в программе MOPAC [27], применение 
других комбинаций функционалов (M06-2X, 
BLYP, B3LYP) и базисных наборов (3-21, 6-31 и 
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6-311+ для атомов H и O, LANL2DZ и SDD для 
атомов Pt и Nb) [28], ограничения на максималь- 
ный шаг изменения координат атомов и изменение 
алгоритма вычисления самосогласованного поля 
не привели к сохранению целостности системы. 
Вне зависимости от алгоритма оптимизация при- 
водила к разрыву связи Pt–O между двумя фраг- 
ментами полиоксониобата, что свидетельствует 
о нестабильности Pt-PON1 в газовой и жидкой 
фазе. Это согласуется с экспериментально на- 
блюдаемым постепенным превращением Pt-PON1 
в Pt-PON2 при длительном хранении в водном 
растворе [24].

Моделирование аддукта Pt-PON1 с Gua по по- 
ложению N7 (рис.  1в) с использованием функ- 

ционалов B3LYP и wB97X-D показало, что сое- 
динение Gua–Pt-PON1 также нестабильно и под- 
вержено разрыву тех же связей Pt–O при сох- 
ранении связи Gua–Pt-PON1 через атомы N7 и 
Pt. При фиксировании связей Pt–O (в том числе 
с последующей релаксацией после оптимиза- 
ции позиций других атомов) можно построить про- 
филь энергии связи Gua–Pt-PON1. Как видно 
из рис.  1г, образование такой связи с длиной 
~2.22  Å выгодно, но стабильность ее невысока 
(~12  кДж/моль). Таким образом, расчеты подт- 
верждают потенциальную возможность образо- 
вания конъюгата Pt-PON1 с Gua, однако перво- 
начальный аддукт, скорее всего, немедленно под- 
вергнется структурной перестройке.

Рис. 1. Моделирование образования аддукта полиоксониобата платины с гуанином. (а) – Структура бицентрового 
полиоксониобата платины [(Nb6O19)2{Pt(OH)2}2]12− (Pt-PON1); (б) – структура моноцентрового полиоксониобата 
платины [Pt(Nb6O19)2]12− (Pt-PON2). Структуры приведены по данным работы [24]; (в) – структура аддукта Gua–Pt-
PON1; (г) – профиль энергии связи N7[Gua]–Pt, рассчитанный на уровне теории B3LYP со смешанным базисным 
набором 6-31 и LANL2DZ.

(а) (б)

(в) (г)



БИООРГАНИЧЕСКАЯ ХИМИЯ          том 51          № 2          2025

365ПОЛИОКСОНИОБАТ ПЛАТИНЫ: СТАБИЛЬНОСТЬ, ЦИТОТОКСИЧНОСТЬ

Цитотоксичность Pt-PON1 для клеток 
Escherichia  coli. Для первичной оценки цито- 
токсичного действия Pt-PON1 исследовали их 
способность подавлять рост E. coli штаммов XL1-
Blue и DH5α. Помимо подавленной за счет мутации 
recA1 в обоих штаммах рекомбинационной ре- 
парации, в геноме DH5α инактивированы гены 
репрессора дезоксирибозного оперона deoR и 
нуклеозидпермеазы nupG, что значительно по- 
вышает чувствительность клеток E.  coli к сое- 
динениям, вызывающим репликативный стресс 
(триметоприм, метотрексат, азидотимидин и т.п.) 
[29]. При краткосрочной обработке соединением 
(30  мин) было обнаружено снижение выжива- 
емости клеток обоих штаммов в 2–3 раза уже в 
присутствии 20 мкМ Pt-PON1 (рис. 2). Поскольку 
дальнейшее повышение концентрации Pt-PON1 со- 
провождалось частичным выпадением вещества 
в осадок в ходе предварительной инкубации с 
клетками (см. ниже), это значение следует рассмат- 
ривать как верхнюю оценку EC50 для проявле- 
ния токсичности Pt-PON1 для указанных штам- 
мов.

Цитотоксичность Pt-PON1 для клеток че- 
ловека. Цитотоксичность Pt-PON1 для клеток 
человека линий HEK293T (иммортализованные 
клетки эмбрионального надпочечника), A-549 
(аденокарцинома легкого) и MCF-7 (карцинома 
молочной железы) оценивали в диапазоне кон- 
центраций 2–22 мкМ и при времени инкубации 

24 ч. В более высоких концентрациях и при более 
длительной инкубации наблюдалось выпадение 
соединения в осадок в течение эксперимента 
при инкубации с ростовой средой и буферными 
растворами, содержащими ионы одновалентных 
металлов в концентрациях, необходимых для 
поддержания жизнеспособности клеток. В ка- 
честве положительного контроля использовали 
цисплатин (рис.  3а), измеренные значения EC50 
для которого (5.4  ±  1.5 мкМ для клеток HEK293T, 
15  ±  3 мкМ для клеток MCF-7, 13  ±  1 мкМ для 
клеток A-549) находились в диапазоне значений, 
описанных в литературе для этих линий [30, 31]. 
В связи с невысокой растворимостью опреде- 
ление EC50 для Pt-PON1 оказалось невозможным, 
однако можно видеть, что для линий HEK293T и 
MCF-7 с ростом концентрации соединения на- 
блюдается дозозависимое падение выживаемости, 
которое достигает ~ 40% при максимальной кон- 
центрации Pt-PON1 (22  мкМ, рис.  3б). Жизне- 
способность клеток A-549 слабо менялась во всем 
диапазоне исследованных концентраций Pt-PON1. 
Таким образом, Pt-PON1 проявляет токсичность, 
по крайней мере для некоторых клеточных линий.

В целом результаты экспериментов с клетками 
человека и E. coli говорят о цитотоксичности Pt-
содержащих полиоксониобатов типа Линквиста 
в достаточно низких концентрациях, что делает 
эти соединения перспективными для дальнейшей 
разработки в качестве фармакологических агентов 
при условии решения проблемы растворимости в 
физиологических жидкостях, которая характерна 
и для полиоксометаллатов других структурных 
классов [18].

Растворимость Pt-PON1 в биологически сов- 
местимых средах. Для оценки возможности более 
точного определения параметров цитотоксич- 
ности Pt-PON1 было исследовано поведение 
этого соединения в нескольких типах растворов, 
применяемых для культивирования клеток че- 
ловека, или их краткосрочной инкубации с фар- 
макологически активными агентами. Pt-PON1 
был растворим в воде и не выпадал в осадок 
при комнатной температуре на протяжении 72 ч 
вплоть до максимальной изученной концентра- 
ции (20  мМ), однако не растворялся в 20 - и 
40 %-ном диметилсульфоксиде. При разведении 
водного раствора Pt-PON1 фосфатно-солевым 
раствором (PBS), сбалансированным солевым 

Рис.  2. График зависимости выживаемости клеток 
E. coli от концентрации Pt-PON1 при краткосрочной 
обработке. Приведены средние значения и стандартное 
отклонение (n = 3) для штаммов DH5α и XL1-Blue.
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раствором Хэнкса или культуральной средой 
(DMEM с эмбриональной сывороткой крупного 
рогатого скота или без нее), выпадал аморфный 
осадок в диапазоне концентраций >125  мкМ 
(рис. 4а). При дальнейшем разведении инкуба- 
ция при 37°С в течение ночи вызывала образо- 
вание моноклинных кристаллов в концентра- 
циях Pt-PON1 >10  мкМ (рис. 4б). Поскольку 
все эти растворы содержат ионы Na+, а при син- 
тезе Pt-PON1 соединение кристаллизуется в виде 
смешанной калий-цезиевой соли [24], была иссле- 
дована растворимость Pt-PON1 в изотони- 
ческом фосфатно-солевом растворе (PBS-Cs), где 
NaCl был полностью заменен на CsCl, а буфер- 
ная емкость создавалась исключительно солями 
калия (156 мМ CsCl, 6.66 мМ KH2PO4/K2HPO4, 
pH 7.5, ср. для стандартного PBS: 156 мМ NaCl, 

6.66 мМ KH2PO4/Na2HPO4, pH 7.5). При разбавлении 
20 мМ водного раствора Pt-PON1 таким буфером 
выпадения осадка не наблюдалось. Однако ин- 
кубация даже в течение 6  ч в PBS-Cs крайне 
негативно влияла на выживаемость всех типов 
клеток, что не позволило определить параметры 
токсичности в этих условиях. В литературе 
описано значительное нарушение ионного сос- 
тава и морфологии клеток в присутствии Cs+ 
[32, 33]. Таким образом, вероятно, за счет ва- 
риации состава моновалентных катионов в среде 
можно достичь оптимального баланса между 
стабильностью растворов Pt-PON1 и выживае- 
мостью клеток при кратковременной инкубации, 
достаточной для определения токсичной дозы 
соединения, однако этот вопрос требует допол- 
нительного изучения.

Рис. 3. График зависимости выживаемости клеток человека от концентрации цисплатина (а) и Pt-PON1 (б). Приведены 
средние значения и стандартное отклонение (n = 5) для линий A-549, MCF-7 и HEK293T.

(а) (б)

Рис. 4. Образование аморфного осадка (а) и моноклинных кристаллов (б) при взаимодействии Pt-PON1 с клеточными 
средами.

(а) (б)
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Накопление Pt-PON1 в клетках человека. 
Для более детального анализа взаимодействия 
Pt-PON1 с клетками человека исследовали на- 
копление этого соединения в клетках HEK293T 
методом атомно-эмиссионной спектроскопии по 
Pt и Nb (рис. 5). Содержание Pt и Nb в клетках 
оценивали после 4 ч инкубации при концентра- 
циях Pt-PON1 5 и 15 мкМ, в которых выпадения 
осадка не наблюдалось. Количество обоих анали- 
тов увеличивалось пропорционально концентра- 
ции Pt-PON1, при этом результаты практически 
не зависели от числа отмывок клеток от среды 
при пробоподготовке. Количественное соотно- 
шение Nb : Pt в образцах составило 5.63  :  1, что 

хорошо соответствует стехиометрии Nb :  Pt 6  :  1 в 
исходном комплексе Pt-PON1 [Nb6O19{Pt(OH)2}]2. 
Таким образом, можно предположить, что комп- 
лекс Pt-PON1 проникает в клетку в неизменном 
виде и претерпевает возможные перестройки уже 
внутри нее. При этом эффективность поглоще- 
ния Pt (~ 4.2 пмоль /106 клеток /1 мкМ соединения) 
находилась на одном уровне с описанной в лите- 
ратуре эффективностью поглощения Pt клет- 
ками нескольких линий плоскоклеточной карци- 
номы при обработке цисплатином на протяжении 
того же времени (~ 2–7 пмоль /106 клеток /1 мкМ 
соединения) [34].

Рис. 5. Содержание Nb (а) и Pt (б) в клетках HEK293T после инкубации с 5 мкМ (столбцы 1, 2, 5, 6) и 15 мкМ Pt-PON1 
(столбцы 3, 4, 7, 8). После инкубации клетки отмывали от соединения 2 раза PBS (столбцы 1, 3, 5, 7) или 3 раза PBS 
(столбцы 2, 4, 6, 8).

(а) (б)

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Материалы. Полиоксониобат платины (IV) 
Cs2K10[Nb6O19{Pt(OH)2}2] . 13 H2O синтезировали 
по описанной методике [24]. В работе исполь- 
зовали следующие реактивы: цисплатин, 3-(4,5- 
диметилтиазолил-2)-2,5-дифенилтетразолий- 
бромид, сбалансированный солевой раствор 
Хэнкса (MilliporeSigma, США); фосфатно-
солевой раствор (Lonza, Швейцария); среду Игла, 
модифицированную Дульбекко, эмбриональную 
сыворотку крупного рогатого скота (Thermo Fisher 
Scientific, США).

Штаммы и клетки. Использовали штаммы 
E.  coli DH5α (F− endA1 glnV44 thi-1 recA1 
relA1 gyrA96 deoR nupG purB20 φ80dlacZΔM15 
Δ(lacZYA-argF)U169 hsdR17(rK

−mK
+) λ−) и 

XL1-Blue (endA1 glnV44 thi-1 recA1 relA1 
gyrA96 lac F′[::Tn10 proAB+ lacIq Δ(lacZ)M15] 
hsdR17(rK

−mK
+)) и линии клеток человека 

HEK293T, A-549 и MCF-7 из коллекции лабо- 
ратории геномной и белковой инженерии 
ИХБФМ СО РАН. Клетки человека проверяли 
на отсутствие заражения микоплазмой методом 
ПЦР клеточных лизатов с использованием набора 
БиоМастер Myco-визор (Биолабмикс, Россия).

Квантово-химические расчеты. Структурную 
стабильность и энергетические характеристики 
Pt-PON1, Pt-PON2 и аддукта Pt-PON с Gua иссле- 
довали методом теории функционала плотности. 
Расчеты проводили с использованием функцио- 
налов (B3LYP, M06-2x, PBE) и смешанных ба- 
зисных наборов (6-31 и 6-311 для атомов водорода 
и кислорода, LANL2DZ и SDD для атомов платины 
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и ниобия) в программном пакете Gaussian16 [35]. 
Подбор параметров расчета показал наилучшее 
соотношение точности расчета и вычислительных 
ресурсов при использовании уровня теории 
B3LYP со смешанным базисным набором 6-31 и 
LANL2DZ соответственно, которые были выб- 
раны далее для всех исследуемых объектов. Для 
моделирования растворителя (вода) использовали 
модель поляризованного континуума (scrf  =  pcm). 
Расчет профиля потенциальной энергии кова- 
лентного присоединения основания Gua к комп- 
лексу Pt-PON1 проводили в режиме жесткого ска- 
нирования (без релаксации) с использованием функ- 
ционалов B3LYP (базисные наборы 6-31 для 
атомов водорода и кислорода, LANL2DZ для 
атомов платины и ниобия) и wB97X-D (базисный 
набор def2-TZVP). Для визуализации структур ис- 
пользовали программы Chemcraft  v1.8 (www.
chemcraftprog.com) и VESTA v3.4.4 [36].

Цитотоксичность Pt-PON1 для клеток E. coli. 
Ночную культуру E. coli собирали центрифугиро- 
ванием, клетки трижды промывали 10 %-ным 
глицерином, инкубировали с водным раствором 
Pt-PON1 (0–250 мкМ) в течении 30 мин на льду 
и высевали на чашки со средой Лурия–Бертани в 
разведении 1 : 107. Число колоний подсчитывали 
после инкубации при 37°С в течение 16 ч.

Цитотоксичность Pt-PON1 для клеток чело- 
века. Клетки культивировали в среде DMEM, 
содержащей 10 %-ную эмбриональную сыворотку 
крупного рогатого скота, 0.45%-ную глюкозу и 
6 мМ L-глутамин. Для эксперимента использовали 
клетки на третьем пассаже после разморозки. 
Pt-PON1 растворяли в деионизированной воде, 
цисплатин – в 0.9%-ном NaCl, затем оба соедине- 
ния разводили до нужных концентраций водой. 
Клетки наращивали в течение 24 ч, затем добав- 
ляли 1/10 объема исследуемого вещества, инку- 
бировали 24  ч, заменяли среду и продолжали 
рост в течение еще 24  ч. После промывки PBS 
оценивали цитотоксичность при помощи ок- 
рашивания 3-(4,5-диметилтиазол-2-ил)-2,5-ди- 
фенилтетразолийбромидом (MTT-тест) [37].

Поглощение Pt-PON1 клетками человека. 
Пробоподготовку проводили согласно опубли- 
кованному протоколу [34]: клетки выращивали 
до 90 %-ной конфлюэнтности и инкубировали с 
Pt-PON1 (5 и 15 мкМ) в течение 4 ч. После трип- 
синизации 107 клеток промывали 2 или 3 раза 

PBS, клеточные осадки сушили 2 ч при 65°C и 
растворяли в смеси азотной (200  мкл) и плави- 
ковой (200 мкл) кислот с добавлением концентри- 
рованной H2O2 (50 мкл) при нагревании на водяной 
бане. Полученные растворы количественно пе- 
реносили в полипропиленовые пробирки и раз- 
бавляли деионизированной водой до 4  мл. Для 
измерения концентрации Pt и Nb использовали 
атомно-эмиссионный спектрометр с индуктивно 
связанной плазмой iCAP-6500 Duo (Thermo Fisher 
Scientific, США). Раствор пробы вводили в плазму 
через инертный концентрический распылитель 
OneNeb Series 2 (Agilent Technologies, США) со 
скоростью 0.7 мл/мин. Для приготовления градуи- 
ровочных растворов использовали одноэлемент- 
ный раствор Pt (ГСО 8431-2003) и стандартный 
раствор, содержащий 50 мг/л Nb (МЭС-4, Скат, 
Новосибирск). Все растворы готовили с исполь- 
зованием деионизированной воды, очищенной 
на установке UltraClear (SG Wasser, Германия). 
Обработку полученных результатов проводили 
с помощью программного обеспечения iTEVA 
v2.8.0.97 (Thermo Fisher Scientific, США).

ЗАКЛЮЧЕНИЕ

В работе исследованы свойства полиоксонио- 
бата платины структуры [(Nb6O19)2{Pt(OH)2}2]12− 
(Pt-PON1) как представителя Pt-содержащих 
полиоксометаллатов типа Линквиста с целью 
оценки перспективности этого класса соединений 
в качестве противоопухолевых агентов. Несмотря 
на пристальное внимание научного сообщества к 
различным проявлениям биологической актив- 
ности полиоксометаллатов разной структуры 
[10–12, 15, 17, 18, 38], до сих пор слабо изучены мо- 
лекулярные механизмы их действия на клетки. 
В рамках предыдущей работы [25] было по- 
казано, что Pt-PON1 не ингибирует ДНК-поли- 
меразы, но образует ковалентные аддукты с ДНК, 
претерпевая при этом структурную перестройку. 
В настоящей работе с привлечением квантово-
химических расчетов подтверждена потенциальная 
возможность образования аддукта Pt-PON с 
ДНК. Pt-PON1 проявлял токсичность для кле- 
ток E. coli и человека даже при небольшом вре- 
мени инкубации. Однако исследование цито- 
токсичности Pt-PON1 осложняется низкой раст- 
воримостью комплекса при взаимодействии с 
клеточными средами. Такое поведение характерно 
для многих полиоксометаллатов, однако их раст- 
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воримость может быть повышена за счет функ- 
ционализации поверхности кластера [39]. На 
основании полученных результатов можно сде- 
лать вывод, что Pt-PON1 способен эффективно 
поглощаться клетками в неизменном виде, внутри 
клетки претерпевать реорганизацию и оказывать 
цитотоксичное действие, вероятно, связанное с 
повреждением ДНК. Дальнейшие исследования, 
направленные на повышение химической ста- 
бильности, растворимости и более детальную харак- 
теристику биологической активности поли- 
оксониобатов платины (IV), приблизят перспек- 
тиву использования этого класса соединений в 
противоопухолевой терапии.
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Platinum polyoxometalates are Pt (IV) complexes containing bulky cluster ligands. We have shown previ-
ously that platinum polyoxoniobate [(Nb6O19)2{Pt(OH)2}2]12− (Pt-PON1) containing two Pt centers can 
covalently bind DNA. Here we have addressed the structural stability of Pt-PON1 and its conjugate with 
guanine at the N7 position, cytotoxicity of this compound, and its accumulation in living cells. Quantum 
mechanical modeling showed that the Pt-PON1 complex is unstable outside the crystal lattice, while its 
conjugate with guanine likely undergoes structural rearrangement quite easily. A decrease in the survival 
of Escherichia coli XL1-Blue and DH5α strains and human HEK293T and MCF-7 cell lines was observed 
already at 20 μM Pt-PON1 but at higher concentrations the compound was poorly soluble in biologically 
compatible media. Atomic emission spectroscopy for Pt and Nb showed that Pt-PON1 is efficiently taken up 
by human cells in a stoichiometry corresponding to the original complex. Thus, platinum polyoxometalates, 
provided their solubility can be improved, may be considered as promising antitumor agents.
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