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ВВЕДЕНИЕ

Уменьшение размера генетически-кодируемых 
меток, используемых для визуализации экспрес- 
сии гетерологичных или модифицированных бел- 
ков в живых клетках и тканях, – одна из приори- 
тетных задач современных исследований. В 
первую очередь это необходимо для минимизации 
влияния метки на функционирование меченого 
белка. Однако еще более важным уменьшение 
размера метки становится в тех случаях, когда 
длина кодирующей последовательности оказы- 
вается ограничена способом доставки соответ- 
ствующей ДНК в клетки, например, при ис- 
пользовании аденоассоциированных вирусов 
(Adeno-associated viruses, AAV) [1]. AAV крайне 
привлекательны как способ доставки ДНК, т.к. 
они обладают низкой иммуногенностью, при 
конструировании вирусных частиц могут быть 
использованы различные серотипы белков кап- 
сида, которые определяют их специфичность 
к заражению определенных типов клеток, а 

их генетический материал не встраивается в 
ДНК хозяина [2–4]. Кроме того, AAV относятся 
к организмам первого уровня биологической 
безопасности, т.е. они практически безопасны 
для здорового человека, применяющего в работе 
с ними минимальные средства защиты [5]. Ос- 
новное ограничение в использовании AAV – 
ограниченная емкость вирусного капсида, спо- 
собного вмещать в себя ~4.7 т.п.н. [6, 7]. Нук- 
леотидная последовательность, кодирующая клас- 
сические флуоресцентные белки, состоит из более  
чем 700 п.н., а масса соответствующей белковой 
молекулы составляет 27 кДа [8]. Структуры флуо- 
ресцентных белков крайне консервативны, по- 
этому значительное уменьшение их размера не 
представляется возможным [8]. В связи с этим, 
а также из-за наличия ряда других недостатков 
флуоресцентных белков (необходимость кисло- 
рода для созревания хромофора, которое может 
быть длительным процессом) в современном на- 
учном сообществе очень востребована разра- 
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ботка альтернативных методов генетически-
кодируемого флуоресцентного мечения.

Наибольший интерес в данной области раз- 
работок привлекают системы флуороген-акти- 
вирующего мечения. Такие системы состоят из 
белковой, генетически-кодируемой части (флуо- 
роген-активирующий белок) и веществ-флуоро- 
генов, которые становятся флуоресцентными 
только оказавшись в кармане флуороген-акти- 
вирующих белков. Флуорогены и флуороген-акти- 
вирующие белки не формируют ковалентной 
связи, что приводит к быстрому обмену флуоро- 
гена между средой и белковым карманом и, как 
следствие, к высокой фотоустойчивости за счет 
возможности обмена фотодеградировавшей мо- 
лекулы флуорогена на новую из раствора. Наи- 
более популярный флуороген-активирующий 
белок – белок FAST – это мутантная форма фото- 
активного желтого белка (Photoactive yellow pro- 
tein, PYP) из Halorhodospira halophila [9]. Белок 
FAST связывает вещества-флуорогены из се- 
мейства арилиден-азолонов, стабилизируя их в 
плоской конформации, и тем самым блокирует 
возможность изомеризации их возбужденных 
состояний, что приводит к высвобождению 
поглощенной при облучении светом энергии 
преимущественно в излучательной форме. Белок 
FAST кодируется нуклеотидной последователь- 
ностью, состоящей из 378 п.н., и имеет молеку- 
лярную массу всего 14 кДа, что делает его одной 
из наименьших генетически-кодируемых флуорес- 
центных меток. В отличие от флуоресцентных 
белков, белок FAST не имеет собственного 
хромофора и не требует стадии созревания, а 
значит, формирование его флуоресцентного 
сигнала не зависит от присутствия кислорода. 
Более того, связывание с флуорогенами проис- 
ходит намного быстрее, чем созревание класси- 
ческих флуоресцентных белков, – фактически 
сигнал появляется сразу после добавления флуо- 
рогена в среду для визуализации. Цветовая 
палитра флуорогенов, совместимых с различ- 
ными вариантами FAST, достаточно широка 
[10–16]. Более того, этот белок используется в 
ряде самых разных подходов к мечению, вклю- 
чающих в себя микроскопию визуализации 
времен жизни флуоресценции (Fluorescence-
lifetime imaging microscopy, FLIM) [17, 18] или 
создание циклических пермутантов [19]. Также 
недавно круг задач, доступных к решению при 

помощи мечения FAST, был расширен благо- 
даря использованию этого белка в методе бимоле- 
кулярной флуоресцентной комплементации [20]. 
Для этой цели белок FAST разделяют на две 
части (так называемый split-белок), а активация 
флуоресценции флуорогена при этом происходит 
только в случае объединения двух частей и фор- 
мирования полной белковой молекулы.

Недавно коллективом нашей лаборатории 
был разработан белок nanoFAST [21], имеющий 
еще меньший размер, чем оригинальный белок 
FAST, также были предложены его модификации, 
способные связывать флуорогены различного 
цвета [22]. В данной работе мы описываем по- 
пытку использования белка nanoFAST в методе 
бимолекулярной флуоресцентной комплемента- 
ции, которая не увенчалась успехом, однако 
привела к созданию флуороген-активирующего 
белка еще меньшего размера. Данный белок 
содержит всего 88 а.о., он выступает N-концевым 
фрагментом белка nanoFAST и был назван нами 
picoFAST.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Дизайн разделенной формы белка nanoFAST 
для использования в методе бимолекулярной 
флуоресцентной комплементации был разра- 
ботан аналогично существующей форме полно- 
размерного FAST [20]. Для этого кодирующая 
последовательность белка была разделена на 
два фрагмента: N-концевой фрагмент nanoFAST 
с Phe2 (соответствует Phe28 в полноразмерном 
FAST) по Ser87 (соответствует Ser114) и C-концевой 
пептид, состоящий из 11 заключительных амино- 
кислотных остатков FAST. Полные белковые 
последовательности обеих частей разделенной 
формы белка nanoFAST приведены в разделе 
“Экспериментальная часть”. Белковый пре- 
парат N-концевого фрагмента nanoFAST был 
наработан с использованием штамма Escherichia 
coli BL21(DE3), а затем очищен при помощи 
металл-аффинной хроматографии. С-концевой 
фрагмент СFAST11 был получен от компании 
Органикум в виде лиофилизированного очищен- 
ного пептида.

Далее нами был проведен скрининг активации 
флуоресценции ряда флуорогенов с помощью 
двух полученных фрагментов белка, а также 
белка nanoFAST в качестве контроля. В скрининг 
были включены три варианта проб: nanoFAST, 
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только N-концевой фрагмент nanoFAST и смесь 
N-концевого фрагмента nanoFAST и избытка 
CFAST11. Каждый вариант пробы смешивали 
с раствором флуорогена в фосфатно-солевом 
буфере комнатной температуры (pH 7.4), при 
этом выдерживали избыток белка в соотношении 
1 : 10. Интенсивности флуоресценций каждой 
пробы оценивали при помощи плашечного ри- 
дера и сравнивали с интенсивностями флуорес- 
ценции растворов флуорогенов той же концентра- 
ции без белков. Оценка соотношений проб 
“белок + флуороген” и “флуороген” позволяла 
проанализировать степень увеличения флуорес- 
ценции флуорогена в присутствии белка (табл. 1).

К нашему удивлению, присутствия в растворе 
только N-концевого фрагмента nanoFAST было 
достаточно для значительного увеличения интен- 
сивности флуоресценции ряда флуорогенов 
(табл. 1). Более того, добавление CFAST11 не 
влияло на степень этого увеличения (табл. 1). 
Наиболее выраженным этот эффект оказался 

для флуорогена HBR-DOM2. Можно предполо- 
жить, что структура N-концевого фрагмента оказы- 
вается достаточной для стабилизации флуоро- 
генов в плоской конформации. При этом данная 
структура также достаточно стабильна, чтобы 
растворенный в избытке в той же смеси CFAST11 
не был способен к встраиванию и восстановле- 
нию полноценной структуры nanoFAST.

Таким образом, мы не смогли использовать 
белок nanoFAST в методе бимолекулярной флуо- 
ресцентной комплементации, однако создали 
новый флуороген-активирующий белок, состоя- 
щий из N-концевого фрагмент nanoFAST. По- 
лученный белок, для которого мы предложили 
название picoFAST, – это наименьший из су- 
ществующих флуороген-активирующих белков, 
он содержит всего 88 а.о. При помощи сервисов 
предсказания структур белков Robetta [23] и 
AlphaFold2 [24], основанных на методах глубин- 
ного машинного обучения, мы получили модели 
предполагаемой структуры picoFAST. Стоит от- 

Таблица 1. Результат скрининга флуорогенов с “расщепленными” компонентами белка nanoFAST

Флуороген Структура Белок
Увеличение интенсивности флуоресценции
430 нм 480 нм 530 нм 580 нм

DOM2
NH

S

O

S

OH
O

O

nanoFAST 18.4 154.3 247.7 2.3

nanoFAST-N-frag 5.4 41.9 101.5 2.4

nanoFAST-N-frag + P1 5.5 43.5 103.1 2.4

HBR-2,5-
DM

NH

S

O

S

OH nanoFAST 7.8 43.2 10.2 1.4

nanoFAST-N-frag 4.7 29.1 18.5 1.1

nanoFAST-N-frag + P1 4.7 29.2 18.1 1.2

SAI365
NH

S

O

S

OH
Br

O

nanoFAST 15.8 47.6 3.8 1.3

nanoFAST-N-frag 5.9 21.2 6.6 1.1

nanoFAST-N-frag + P1 6.0 21.4 6.6 1.1

SAI362
NH

S

O

S

OH

O

nanoFAST 12.7 42.9 2.4 1.2

nanoFAST-N-frag 4.0 15.4 3.2 1.0

nanoFAST-N-frag + P1 4.1 15.6 3.2 1.0

SAI366
NH

S

O

S

OH
Cl

O

nanoFAST 16.5 45.7 3.1 1.2

nanoFAST-N-frag 6.5 24.4 7.0 1.2

nanoFAST-N-frag + P1 6.1 19.8 6.4 1.1
Примечание: полужирным шрифтом выделены максимальные значения увеличения интенсивности флуоресценции для каж-
дой пары белок–флуороген.
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метить, что оба сервиса характеризуются высокой 
степенью достоверности предсказываемых ими 
структур, однако в случае picoFAST полученные 
структуры отличались (рис. 1). Была предсказана 
как возможность замыкания β-листов (Robetta, 
рис. 1б), так и существование белка с недостаю- 
щим фрагментом с сохранением структуры, близ- 
кой к структуре FAST (AlphaFold2, рис 1в).

Затем мы решили проверить, возможно ли 
использовать полученный нами белок picoFAST 
для генетически-кодируемого флуоресцентного 
мечения. Для этого молекулярно-биологическими 
методами была создана конструкция H2B-TagBFP- 
picoFAST. Кодирующая нуклеотидная последо- 
вательность picoFAST была слита с нуклеотид- 
ной последовательностью TagBFP, а та – с по- 
следовательностью белка-гистона H2B, между 
последовательностями были добавлены спей- 
серы, кодирующие глицин-сериновые линкеры. 

Экспрессированный гибридный белок локали- 
зовался в ядре эукариотических клеток благодаря 
включению в его состав гистона H2B. Экспрессия 
TagBFP помогала визуализировать клетки, ко- 
торые прошли через трансфекцию, до добавления 
в среду для визуализации флуорогена; спектр 
возбуждения и эмиссии TagBFP имеет мини- 
мальное перекрытие со спектрами связанного 
с picoFAST флуорогена HBR-DOM2. Мы про- 
экспрессировали описанную конструкцию в 
клетках HeLa Kyoto. Добавление в среду флуоро- 
гена приводило к развитию флуоресцентного 
сигнала, совпадающего по своей локализации с 
сигналом, детектируемым в канале BFP (рис. 2). 
Это означает, что проэкспрессированный в клет- 
ках эукариот picoFAST способен к активации 
флуоресценции флуорогена и может быть приме- 
нен в качестве наименьшей из существующих 
флуороген-активирующих меток. Отметим, что 

Рис. 1. Моделирование структуры белка picoFAST. (а) – Часть структуры полноразмерного белка FAST (PDB: 7AVA), 
соответствующая nanoFAST. Серым выделена часть структуры, соответствующая C-концевому пептиду CFAST11. Здесь 
и далее в цвета радуги (не серым) окрашен N-концевой фрагмент nanoFAST с F2 (соответствует F28 в полноразмерном 
FAST) по S87 (соответствует S114); данный фрагмент мы называем picoFAST; (б) и (в) – модели структуры picoFAST, 
полученные при помощи сервисов предсказания структур белков Robetta и AlphaFold2 соответственно.

(а) (б) (в)

Рис. 2. Микрофотографии живых клеток HeLa Kyoto, экспрессирующих локализующийся в ядре гибридный белок 
H2B-TagBFP-picoFAST, до и после добавления связывающегося с picoFAST флуорогена HBR-DOM2. Визуализацию 
проводили в двух каналах: BFP для подтверждения экспрессии H2B-TagBFP-picoFAST и GFP для детектирования 
разгорания флуорогена после его связывании с picoFAST. Микрофотографии получены на широкопольном 
флуоресцентном микроскопе BZ-9000 (Keyence, Япония), оснащенного масляным объективом 60× PlanApo 1.40 NA 
(Nikon, США).



БИООРГАНИЧЕСКАЯ ХИМИЯ          том 51          № 2          2025

304 БАЛЕЕВА и др.

использовавшаяся в эксперименте концентрация 
флуорогена достаточно высока, но мы надеемся 
на возможность создания улучшенной версии 
белка picoFAST.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Оборудование.  Бактериальные клетки на- 
ращивали при помощи шейкера-инкубатора New 
Brunswick Excella E25 (Eppendorf, Германия), 
клеточную массу осаждали центрифугированием 
с использованием Heraeus Multifuge 3SR (Thermo 
Fisher Scientific, США). Соникацию проводили 
при помощи ультразвукового гомогенизатора 
Bandelin SONOPULS HD 2200, оснащенного ге- 
нератором HF GM 2200 и титановым зондом MS 73 
(Bandelin, Германия). Скрининг библиотеки ве- 
ществ осуществляли с помощью плашечного ри- 
дера Infinite 200 Pro M Nano (Tecan, Австрия). 
Микроскопию проводили при помощи инвер- 
тированного микроскопа BZ-9000 (Keyence, 
Япония), оснащенного масляным объективом 
60× PlanApo 1.40 NA (Nikon, США). Для под- 
держания клеточной культуры использовали ин- 
кубатор Sanyo MCO-175 (Sanyo, Япония).

Флуорогены. Флуорогены HBR-DOM2, HBR- 
2,5-DM, SAI365, SAI362 и SAI 366, описанные 
в данной статье, получены ранее в нашей лабо- 
ратории. Эти 2,5-замещенные флуорогены пока- 
зали высокую эффективность при взаимодейст- 
вии с белком nanoFAST и его вариантами [22].

Экспрессия гена и наработка белка. Син- 
тез нуклеотидной последовательности, кодирую- 
щей N-фрагмент nanoFAST (белок picoFAST), к 
3'-концу которой была добавлена последова- 
тельность, кодирующая 6 гистидиновых и 3 гли- 
циновых остатков, проведен компанией Клонинг 
Фасилити (Россия). Итоговая нуклеотидная по- 
следовательность picoFAST была получена от 
Клонинг Фасилити заклонированной в экс- 
прессионный вектор pEXPR_002 (аминокислотная 
последовательность picoFAST, добавленные к 
ней 6 гистидиновых и 3 глициновых остатка 
выделены полужирным шрифтом: MGHHH- 
HHHGGFGAIQLDGDGNILQYNAAEGDIT-
GRDPKQVIGKNFFKDVAPGTDSPEFYGKFK-
EGVASGNLNTMFEWMIPTSRGPTKVKVHM-
KKALS). Нуклеотидная последовательность, 
кодирующая nanoFAST, была получена нами в 
экспрессирующем векторе pEXPR_002 ранее [21]. 

Наработку белков проводили с использованием 
штамма E. coli BL21(DE3) в среде M9. Клетки 
наращивали при 37°С и 250 об/мин до достижения 
OD600 0.6. Экспрессию белков индуцировали 
изопропил-β-D-1-тиогалактопиранозидом (IPTG) 
(Helicon, Россия) в конечной концентрации 0.3 мМ 
и продолжали культивирование клеток в течение 
4–5 ч, после чего клетки осаждали, полученный 
осадок подвергали соникации на льду. Целевые 
белки очищали при помощи металл-аффинной 
хроматографии, после чего диализовали через 
мембрану с отсечкой по молекулярной массе в 
3.5 кДа против фосфатно-солевого буфера при 
комнатной температуре. Полученные препараты 
белка хранили при 4°С.

С-концевой фрагмент белка nanoFAST 
(СFAST11, последовательность GDSYWVFVKRV) 
был получен от компании Органикум (Россия) в 
виде лиофилизированного очищенного пептида.

Скрининг in vitro. Эффективность связывания 
флуорогенов с белком picoFAST (N-фрагментом 
nanoFAST) проверяли с использованием растворов, 
содержащих 1 мкМ флуорогена и 10 мкМ белка, 
измерения проводили в фосфатном буфере 
(рН 7.4, Amresco, США). Для расчета усиления 
флуоресценции при связывании флуорогена с 
белком использовали отношение интегральной 
интенсивности флуоресценции смеси флуорогена 
и белка к аналогичной интенсивности флуорес- 
ценции раствора свободного флуорогена на 
приборе Infinite 200 Pro M Nano (Tecan, Австрия) 
в плашечном формате. Все пробы возбуждали 
светом четырех длин волн (430, 480, 530 и 580 со- 
ответственно).

Модели структур picoFAST. Для получения 
модели picoFAST его аминокислотная последо- 
вательность была загружена на сервер Robetta 
(https://robetta.bakerlab.org/), в моделировании 
использовали метод RoseTTAFold. Вторая модель 
структуры picoFAST была получена при помощи 
AlphaFold Colab (https://colab.research.google.com/
github/deepmind/alphafold/blob/main/notebooks/
AlphaFold.ipynb) с использованием AlphaFold 
v2.3.2; сервису также была предоставлена пер- 
вичная структура picoFAST. Модели были по- 
лучены в форме PDB-файлов, которые далее 
были визуализированы и проанализированы при 
помощи программы PyMOL 2.5.7 (https://www.
pymol.org/).



БИООРГАНИЧЕСКАЯ ХИМИЯ          том 51          № 2          2025

305picoFAST – НОВАЯ ГЕНЕТИЧЕСКИ-КОДИРУЕМАЯ ФЛУОРЕСЦЕНТНАЯ МЕТКА

ДНК-конструкции для экспрессии в клетках 
эукариот. Нуклеотидная последовательность, 
кодирующая белок picoFAST (N-фрагмент белка 
nanoFAST), была синтезирована фирмой Клонинг 
фасилити (Россия) и заклонирована в плазмиду 
Level 0 для дальнейшей сборки ДНК-конструкций 
при помощи метода MoClo [25, 26]. Согласно 
синтаксису этого метода, входящего в семейство 
методов клонирования Golden Gate, была собрана 
конструкция H2B-TagBFP-picoFAST, кодирующая 
слитые последовательности белка-гистона чело- 
века H2B (UniProt ID: P06899), флуоресцентного 
маркера TagBFP (FPbase ID: BFJKS) и picoFAST 
(N-фрагмента nanoFAST), разделенные короткими 
глицин-сериновыми спейсерами. Итоговая кон- 
струкция экспрессировалась под управлением 
CMV-промотора и SV40 poly(A). Клонирование 
осуществляли при помощи эндонуклеазы рест- 
рикции Eco31I (BsaI) (Thermo Scientific, США) и 
T4 ДНК-лигазы (Евроген, Россия). Правильность 
полученных конструкций была подтверждена 
секвенированием по Сэнгеру (Евроген, Россия).

Поддержание и трансфекция клеточной 
культуры HeLa Kyoto. Клеточная культура ра- 
ковой опухоли шейки матки человека HeLa Kyoto 
была получена из коллекции клеточных ли- 
ний отдела биофотоники ИБХ РАН. Клетки культи- 
вировали в течение недели после разморажи- 
вания в среде RPMI 1640 (ПанЭко, Россия) с до- 
бавлением 10% телячьей эмбриональной сы- 
воротки (ПанЭко, Россия) и смеси антибиоти- 
ков пенициллина (50 ед./мл) и стрептомицина 
(50 мкг/мл) (ПанЭко, Россия) при 37°С и 5% 
CO2 в CO2-инкубаторе (Sanyo, Япония). Для 
проведения микроскопии клетки высевали на 
35-мм конфокальные чашки со стеклянным дном 
(SPL Life Sciences, Корея). Растущие на чашках 
клетки трансфицировали при помощи поли- 
этиленимина, PEI (Polysciences, США). За 1 ч 
до начала трансфекции культуральную среду 
заменяли на 500 мкл бессывороточной среды 
Opti-MEM (ПанЭко, Россия). Далее раздельно 
смешивали 250 мкл Opti-MEM с 3 мкл PEI и 
250 мкл Opti-MEM с 1 мкг плазмидной ДНК, 
инкубировали 5 мин. Раствор, содержащий 
PEI, и раствор, содержащий плазмидную ДНК, 
смешивали и инкубировали 20 мин, после чего 
по каплям добавляли в чашки с растущими 
клетками и инкубировали 4 ч. По окончании 
инкубации среду заменяли на свежую RPMI 1640 
с сывороткой и антибиотиками.

Флуоресцентная микроскопия живых кле- 
ток. Микроскопию проводили при помощи ин- 
вертированного микроскопа BZ-9000 (Keyence, 
Япония), оснащенного масляным объективом 
60× PlanApo 1.40 NA (Nikon, США) и кубом ET-
EBFP2/Coumarin/Attenuated DAPI, длины волн 
возбуждающего света 405/20, фильтр 425, длины 
волн детектируемого света 460/50, и GFP-B, длины 
волн возбуждающего света 470/40, фильтр 495, 
длины волн детектируемого света 535/50. Для 
этого на следующий день после трансфекции 
культуральную среду заменяли на 1 мл раствора 
Хэнкса (ПанЭко, Россия) с добавлением 20 мМ 
HEPES (Sigma, Германия), получали микро- 
фотографии клеток в каналах BFP и GFP, после 
чего добавляли 1 мл раствора Хэнкса с 20 мМ 
HEPES и 40 мкМ HBR-DOM2, разведенного из 
10 мМ стока в DMSO (Sigma-Aldrich, США). 
Получали микрофотографии клеток в каналах BFP 
и GFP при конечной концентрации HBR-DOM2 
20 мкМ. Микрофотографии обрабатывали при 
помощи программы Fiji (https://fiji.sc/), в которой 
с помощью плагина “background subtraction from 
ROI” из изображения вычитали фоновые значения 
интенсивности флуоресценции.

ЗАКЛЮЧЕНИЕ

Получен новый флуороген-активирующий 
белок picoFAST (88 а.о.), на данный момент яв- 
ляющийся наименьшим флуороген-активирую- 
щим белком. Показано, что комплекс белка 
picoFAST с флуорогеном HBR-DOM2 может быть 
использован в качестве генетически-кодируемой 
флуоресцентной метки для окрашивания от- 
дельных структур живых клеток.
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A new genetically encoded fluorescent tag picoFAST has been proposed, which contains only 88 amino 
acids and is currently the smallest fluorogen-activating protein. It was shown that the picoFAST protein in 
complex with HBR-DOM2 fluorogen can be used as a genetically encoded fluorescent label for staining 
individual structures of living cells.
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