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ВВЕДЕНИЕ
Присуждение в 1998 г. Нобелевской премии по 

физиологии и медицине Роберту Ф. Форчготту, 
Луису Игнарро и Фериду Мьюрэду за их открытия, 

касающиеся оксида азота в качестве сигнальной 
молекулы в сердечно-сосудистой системе, под- 
черкнуло важность изучения проблемы функцио- 
нирования NO-радикала как регулятора клеточ- 
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Стратегическая цель работы – создание на основе сывороточного альбумина человека (HSA), меченного 
флуорофором, клинически значимого экзогенного донора NO, несущего остаток борсодержащего 
соединения, для реализации комбинированной NO-химиотерапии и бор-нейтронозахватной 
терапии. Путем селективной модификации остатка Cys34 альбумина малеимидным производным 
флуоресцентного красителя и последующего N-гомоцистеинилирования производным тиолактона 
гомоцистеина, содержащим остаток клозо-додекабората, была получена наноконструкция для бор-
нейтронозахватной терапии. Синтез аналога на основе природного модификатора – борсодержащего 
тиолактона гомоцистеина – был осуществлен путем алкилирования аминогруппы тиолактона с 
помощью диоксониевого производного клозо-додекабората. Постсинтетическая модификация 
остатков лизина белка с использованием бор-тиолактона гомоцистеина обеспечила введение в 
белок SН-групп и возможность последующего транс-S-нитрозилирования белка с помощью 
S-нитрозоглутатиона. Обнаружено, что 2 моль NO конъюгировано с 1 моль борсодержащего HSA. 
Продемонстрировано, что борсодержащий S-нитрозотиол на основе гомоцистеиниламида альбумина, 
даже без облучения эпитепловыми нейтронами, более цитотоксичен в отношении клеточных линий 
глиобластомы человека, чем борсодержащий конъюгат альбумина. Таким образом, использованный 
подход позволяет получить обогащенную атомами бора конструкцию на основе биосовместимого 
опухоль-специфичного белка, содержащую флуоресцентную метку и увеличенное количество 
S-нитрозогрупп, необходимых для проявления химиотерапевтического эффекта. Практическая 
значимость данной конструкции состоит в возможности ее использования в рамках воздействия на 
раковую опухоль, совмещающего химио- и бор-нейтронозахватную терапию.
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ного и тканевого метаболизма [1]. Оксид азота, 
синтезируемый в различных тканях, может диф- 
фундировать через клеточные мембраны, что и 
обеспечивает его действие без участия клеточных 
рецепторов [2–4]. Однако эндогенный NO-
радикал нестабилен и имеет довольно короткий 
период полураспада. Среди многочисленных 
продуктов его превращения особое место зани- 
мают пероксинитрит, нитриты, нитраты, гемо- 
вые и негемовые нитрозильные комплексы, а так- 
же нитрозотиолы [5–7]. За исключением перокси- 
нитрита [8], все они способны при определенных 
условиях выделять оксид азота в свободном виде  
и, таким образом, являются депо NO. Будет ли 
действие NO-доноров полезным или вредным 
для организма в целом, зависит от того, на что 
оно направлено. Направленность воздействия 
на собственные здоровые клетки организма не- 
желательна, т.к. может вызвать проявление по- 
бочных эффектов при терапии. Специфическое 
воздействие на чужеродные или на собственные 
нездоровые клетки (например, на раковые клетки 
или на микроорганизмы в крови) будет обеспечивать 
эффективную терапию донором оксида азота. 
Таким образом, стратегии использования оксида 
азота в качестве терапевтической молекулы тре- 
буют его направленной доставки в ткани-мишени, 
чтобы ограничить биоэффекты NO этой областью.

В течение многих лет в научном обществе 
активно шла дискуссия о том, действует ли молекула 
NO как противоопухолевый или канцерогенный 
агент. Оказалось, что оксид азота обладает спо- 
собностью как оказывать противоопухолевое 
действие, так и стимулировать развитие опухолей 
[8–10]. Определение того, какой эффект будет 
преобладать, зависит от типа ткани, концентрации 
вводимого NO и микроокружения опухоли. Тем не 
менее эти открытия привели к широкому числу 
предлагаемых вариантов использования оксида 
азота в качестве противоракового агента, как 
в газовой химиотерапии, так и в комбинации с 
другими методами лечения [11–19].

В числе кандидатов на роль транспортера 
оксида азота, обеспечивающего направленную 
доставку в злокачественные опухоли, рассмат- 
ривают сывороточный альбумин человека (HSA),  
являющийся одним из наиболее важных эндоген- 
ных белков для транспорта NO в крови человека  
[19, 20]. Было обнаружено, что S-нитрозилирован- 
ный альбумин может активировать или подавлять 

разнообразные биохимические и физиологические 
процессы, включающие многие стороны жизне- 
деятельности клеток и тканей [21–26]. Известно, 
что этот белок широко распределяется по орга- 
низму как в крови, так и в различных интер- 
стициальных жидкостях и органах. Распределение 
альбумина in vivo контролируется множествен- 
ными рецепторами альбумина [27]. Рецепторы 
альбумина представляют собой группу разно- 
образных белков, таких как FcRn, gp60, мега- 
лин, кубилин, SPARC и CD36, при этом они взаимо- 
действуют с разными сайтами альбумина. Дли- 
тельный период циркуляции (~19 сут) HSA за  
счет взаимодействия с рециклирующим клеточ- 
ным неонатальным Fc-рецептором (FcRn), био- 
совместимость и отсутствие присущей боль- 
шинству других систем доставки токсичности 
делают альбумин идеальным носителем для 
доставки лекарств с широким терапевтическим 
применением [28–30]. Аккумуляция альбумина 
в опухолевых клетках может быть обусловлена 
трансцитозом в интерстициальное пространство 
опухоли, который обеспечивается специфическим 
взаимодействием с рецептором SPARC (секре- 
тируемый кислый и богатый цистеином белок). 
Более того, пролонгированное время циркуляции 
макромолекулярных терапевтических конструк- 
ций дает возможность использовать для пассив- 
ного накопления препарата в злокачественных 
опухолях сосудистые дефекты солидных опухолей 
через феномен, известный как эффект повышен- 
ной проницаемости и удерживания (накопления) 
(EPR-эффект) [31–33]. В последние десятилетия 
EPR-эффект был признан центральной парадигмой 
в адресной доставке препаратов в опухоль. Бла- 
годаря этой концепции нанотехнологии достигли 
феноменального уровня исследований. На се- 
годняшний день накапливается все больше ис- 
следований, демонстрирующих, что одним из 
энхансеров EPR-эффекта выступает оксид азота 
[33–36]. Однако противоопухолевое действие NO 
имеет сильную концентрационную зависимость 
[16]. Ряд факторов, среди которых гетерогенность 
опухоли, усложнение в микроокружении опу- 
холи, сложность взаимодействий между NO-ради- 
калом и иммунной системой, а также несоответ- 
ствие между лабораторными моделями и опу- 
холями человека, в значительной степени обус- 
ловливают низкую эффективность адресной 
доставки в опухоль и приводят к терапевтической 
неудаче в клинической реализации [31, 34]. Для  
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решения данных проблем предлагается исполь- 
зовать NO-терапию в комбинации с другими 
терапевтическими методами, например, лучевой, 
фототермической или фотодинамической терапией 
(рис. 1) [36–39].

Противоопухолевый механизм NO – ключ к 
лечению рака, а рационально спроектированные 
системы доставки NO, обеспечивающие высво- 
бождение NO в необходимый момент в опухо- 
левой ткани, имеют решающее значение для 
успеха биомедицинского применения NO при ком- 
бинированной терапии. Показано [39], что можно 
обеспечить эффективность NO-терапии через 
разрушение связи S–N в S-нитрозотиолах путем 
контролируемой дозы рентгеновского излучения. 
Однако широко распространенные в настоящее 
время фракционные рентгеновская и протонная 
радиотерапии отличаются тяжестью побочных 
эффектов. Избирательность воздействия на 
опухолевые клетки при этих видах радиотерапии 
определяется точностью физической фокусировки 
облучения в опухоли.

По сравнению с традиционными видами ра- 
диационной терапии с использованием рент- 
геновского излучения и протонных пучков, бор-

нейтронозахватная терапия (БНЗТ) обладает ря- 
дом уникальных преимуществ [40, 41]. Для про- 
ведения этой терапии пациенту вводят препарат 
со стабильным изотопом 10В . Продукты ядерной 
реакции (рис. 2), ядро лития с энергией 0.84 МэВ 
и α-частица с энергией 1.47 МэВ, имеют малый 
пробег в воде или в тканях организма – 5.2 и 7.5 мкм  
(характерный размер клеток млекопитающих). 
В 6.1% случаев энергия, которая выделяется при 
поглощении нейтрона ядром 10В, распределяется 
только между ядром лития и α-частицей, в 93.9% 
случаев ядро лития вылетает в возбужденном со- 
стоянии и испускает γ-квант с энергией 0.48 МэВ.  
Темп торможения γ-кванта существенно ниже –  
0.3 кэВ мкм–1. Таким образом, выделение ос- 
новной части энергии ядерной реакции 10В (n, α)  
7Li, а именно 84%, ограничивается размером од- 
ной клетки, и селективное накопление бора 
внутри клеток опухоли и последующее облуче- 
ние нейтронами должны приводить к ее разруше- 
нию с относительно малыми повреждениями 
окружающих нормальных клеток. В случае объе- 
динения борсодержащего остатка и S-нитрозо- 
тиола в пределах одной молекулы белка можно  
обеспечить за счет испускания γ-кванта скоорди- 
нированное разрушение связи S–N и высво- 

Рис. 1. Подходы к усилению эффективности NO-терапии путем воздействия экзогенных (свет, ультразвук, рентгеновские 
лучи) или эндогенных (глутатион, кислота, глюкоза) стимулов [37]. 
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бождение необходимого количества оксида азота  
в соответствии с патофизиологическими потреб- 
ностями.

Цель данной работы заключалась в конструи- 
ровании на основе альбумина бор-обогащенного 
экзогенного донора оксида азота для реализации 
комбинированной NO-терапии и БНЗТ. В полу- 
ченную конструкцию была включена репортерная 
группа, которая, как было показано ранее [42], 
способна обеспечить возможность прижизненной 
визуализации процесса доставки терапевтических 
наноконструкций в опухоль.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Сывороточный альбумин человека содержит в 
своем составе только одну полипептидную цепь 
из 585 а.о., состоящую из трех гомологичных 
α-спиральных доменов (I, II и III) [43]. Каждый 
домен имеет два субдомена, обозначаемых А и В.  
В HSA имеется 35 остатков цистеина, 34 из ко- 
торых образуют 17 дисульфидных мостиков. Из- 
вестно [43], что Cys34, находящийся в субдо- 
мене IА, – это единственный остаток цистеина, 
сульфгидрильная группа которого не вовлечена в 
образование дисульфидной связи. Универсальная 
реакционная способность остатка Cys34 обеспе- 
чила возможность осуществлять транс-нитрози- 
лирование альбумина с помощью S-нитрозо- 
глутатиона [44]. Использование данного остатка 
для модификации белка невозможно переоценить. 
К сожалению, таким образом можно ввести не  
более одной NO-группы в белок. Более того, титро- 
вание с помощью реагента Эллмана (дитио-5,5'-
бис(2-нитробензойная кислота)) указывает на  

то, что в большинстве коммерческих препара- 
тов альбумина присутствует не более 30% вос- 
становленной формы Cys34, тогда как остальные 
остатки встречаются в виде либо смешанных 
дисульфидов, либо необратимых окисленных форм 
[45, 46]. Таким образом, при S-нитрозилировании 
альбумина только небольшой процент молекул 
белка будет содержать нитрозогруппу, но это 
биологическая реальность.

Ввиду наличия в молекуле альбумина большого 
количества первичных аминогрупп (59 остатков 
лизина) авторам [47, 48] удалось повысить степень 
модификации альбумина молекулами оксида 
азота (6.64 моль NO/моль HSA) путем введения в 
белок дополнительных сульфгидрильных групп 
при взаимодействии его с реагентом Траута 
(2-иминотиоланом). В экспериментах in vitro и  
in vivo был отмечен выраженный противоопухо- 
левый эффект при использовании полученного 
таким способом S-нитрозилированного альбумина.

Синтез и использование борсодержащего 
аналога тиолактона гомоцистеина для созда- 
ния бор-обогащенного экзогенного донора оксида  
азота на основе альбумина. Ранее [49–53] мы со- 
общали об использовании другого ацилирующего 
агента – тиолактона гомоцистеина (циклического 
тиоэфира) – для обогащения молекул альбумина  
сульфгидрильными группами с целью последую- 
щего синтеза на основе функционализирован- 
ного белка различных мультифункциональных 
наноконструкций для тераностики рака. Исполь- 
зуя при N-гомоцистеинилировании оптимальное 
соотношение ацилирующего реагента и молекул 
белка, мы посредством сайт-специфической мо- 

Поток 
эпитермальных 

нейтронов

Воздух Ткань

α

Eα = 1.47 МэВ
Eγ = 0.48 МэВ

(94%)

γ

ELi = 0.84 МэВ

7Li
11B*

10B

t ~10–12
с 

Рис. 2. Принципиальная схема БНЗТ [40].
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дификации минимизировали изменение в струк- 
туре альбумина, что важно для получения препа- 
ратов с высокой противоопухолевой активностью 
[42, 53]. Использование тиолактона гомоцистеина 
(HTL) для введения в белок дополнительных 
сульфгидрильных групп открывает поистине уни- 
кальные возможности. Благодаря присутствию 
в структуре HTL двух функциональных групп 
(аминогруппа и тиолактоновый цикл) тиолактон 
может реагировать как с нуклеофильными аген- 
тами (тиоэфирная группировка), так и с электро- 
фильными реагентами (аминогруппа). Таким об- 
разом, через модификацию аминогруппы тиолак- 
тона можно получать различные производные 
природного модификатора, а наличие тиолакто- 
нового кольца обеспечивает возможность присое- 
динения модифицированного остатка гомоцис- 
теина к боковым радикалам лизина в белке [42, 
49–53].

В настоящей работе мы использовали амино- 
группу HTL для присоединения остатка борсодер- 
жащего соединения. Поскольку для БНЗТ крити- 
чески важным является наличие значительного 
количества атомов бора, в качестве борсодержа- 
щих молекул для получения бор-обогащенного 
экзогенного донора оксида азота было выбрано 
производное клозо-додекабората, содержащее 12 
атомов бора. Такого типа производные, будучи 
дианионами, обладают, в зависимости от катиона, 
хорошей растворимостью как в органических 
растворителях, так и в воде, что представляет со- 
бой важное синтетическое преимущество при 
синтезе борсодержащего аналога HTL (рис. 3,  
соединение HTL-B11H12) и последующего конъюги- 
рования его с молекулами альбумина (рис. 4). 
Ранее [51, 52] было показано, что пролиферация 
клеток глиобластомы человека U-87MG, предва- 
рительно обработанных конъюгатом альбумина 
с клозо-додекаборатом, снижается после прове- 
дения БНЗТ. Данные сопоставимы с таковыми, 
полученными при инкубации клеток с борфенил- 

аланином и последующем облучении. Более того, 
исследования in vivo развития глиомы у крыс 
после введения конъюгатов альбумина с клозо-
додекаборатом и последующего облучения потоком 
эпитепловых нейтронов показало замедление 
роста опухоли [54]. Таким образом, использование 
клозо-додекабората для получения на основе 
альбумина бор-обогащенного экзогенного донора 
оксида азота представляется перспективным.

Синтез борсодержащего аналога HTL-B11H12  
осуществляли путем алкилирования аминогруп- 
пы тиолактона гомоцистеина (I) с помощью ди- 
оксониевого производного клозо-додекабората 
(II) (рис. 3). Оксониевую соль клозо-додекабората 
получали согласно методу [55]. Ранее [56] было  
установлено, что такие оксониевые производные 
клозо-додекабората способны реагировать с вы- 
сокими выходами с различными аминами. Выде- 
ление целевого продукта реакции из реакционной 
смеси проводили методом колоночной хрома- 
тографии на силикагеле. Условия выделения и 
подробные характеристики целевого продукта 
реакции приведены в разделе “Эксперим. часть”.

Далее борсодержащее производное тиолактона 
было использовано в качестве функционального 
мостика для сайт-специфического связывания 
клозо-додекабората и оксида азота с молекулами 
альбумина. Реализовать уникальный потенциал 
альбумина для получения мультифункционального 
экзогенного донора NO возможно благодаря сайт-
специфической модификации в отдельных модулях 
белка. Схема синтеза на основе альбумина бор-
обогащенного экзогенного донора оксида азота, 
содержащего репортерную группу, представлена 
на рис. 4 (путь а).

Наличие в HSA только одной свободной SH-
группы в остатке Cys34 в субдомене IA позволило 
в настоящей работе селективно присоединить 
флуоресцентную метку с использованием малеи- 
мидного производного красителя (рис. 4, путь а).  
Известно, что малеимидные производные спо- 

Рис. 3. Схема синтеза борсодержащего аналога тиолактона гомоцистеина (HTL-B12H11). 
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собны взаимодействовать также с боковыми ра- 
дикалами лизина [57]. Однако высокая нуклео- 
фильность сульфгидрильной группы на альбу- 
мине обеспечивает при использовании 2-крат- 
ного избытка малеимидного реагента селектив- 
ность модификации только по остаткам Cys34 [50]. 
Таким образом, аминогруппы остатков лизина, 
необходимые для введения клозо-додекабората 
через N-гомоцистеинилирование белка (рис. 4,  
путь b) с использованием бор-производного 
тиолактона, остаются интактными.

N-Гомоцистеинилирование альбумина, содер- 
жащего флуорофор, проводили в условиях, близ- 
ких к физиологическим (фосфатный буфер PBS,  
рН 7.4). После реакции проводили очистку моди- 
фицированного белка от низкомолекулярных сое- 
динений в центрифужных концентраторах.

Транс-нитрозилирование борсодержащего 
ацетамида альбумина. Для транс-нитрозили- 
рования HSA и борсодержащего гомоцистеинил- 
амида альбумина использовали S-нитрозоглута- 
тион (рис. 4, пути b и c). S-Нитрозилирование 
проводили в условиях, близких к физиологичес- 
ким (фосфатный буфер PBS, рН 7.4). После реак- 
ции проводили очистку модифицированного белка 
от низкомолекулярных соединений в центри- 
фужных концентраторах.

Согласно физико-химическим характеристи- 
кам (электронная спектроскопия, масс-спектромет- 
рия, гель-электрофорез, анализ функциональных 
групп), модифицированный альбумин содержит в  
структуре флуорофор, монооксид азота и атомы 
бора. По данным электронной спектроскопии 
(рис. 5а), у очищенного от низкомолекулярной 
фракции белкового конъюгата HSA-Cy5 наблюда- 

d c

a b

Рис. 4. Схема получения S-нитрозилированного борсодержащего гомоцистеиниламида альбумина, содержащего 
флуоресцентный краситель (пути а, b и c), и S-нитрозилированного альбумина (путь d). 
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ется появление полосы поглощения на 650 нм, что  
соответствует наличию в его составе красителя 
Су5. Расчет, проведенный с учетом коэффициен- 
тов экстинкции белка и красителя Су5, показал 
степень модификации белка красителем, рав- 
ную 24%, что практически соответствует коли- 
честву свободных остатков Cys34 в исходном ком- 
мерчески доступном альбумине (25%). После про- 
ведения стадии гомоцистеинилирования и обра- 
ботки S-нитрозоглутатионом длинноволновое 
поглощение в электронных спектрах всех конъю- 
гатов, соответствующее красителю Cy5, сохраня- 
ется (рис. 5а). Согласно данным MALDI-TOF-спек- 
трометрии (рис. 5б), конъюгат HSA-Cy5-HcyB12H11  
содержит в среднем 2.6 остатка HcyB12H11, т.к.  
разность масс HSA-Cy5 и HSA-Cy5-HcyB12H11 
составляет 902 Да, а масса одного присоединен- 
ного остатка HcyB12H11 – 347 Да. По данным 
атомно-эмиссионной спектрометрии с индук- 
тивно-связанной плазмой, с одной молекулой аль- 
бумина связывается в среднем 2.4 остатка борсодер- 

жащего HTL. Было обнаружено, что 2 моль NO 
конъюгировано с 1 моль борсодержащего HSA.

Эксперименты in vitro. Противоопухолевую 
активность борсодержащей мультифункциональ- 
ной наноконструкции оценивали in vitro с ис- 
пользованием МТТ-теста [58] (рис.  6). При об- 
работке клеток линии Т98G конъюгатом HSA-Cy5-
HcyB12H11-NO выживаемость клеток уменьшается 
в зависимости от дозы, и самое низкое значение 
выживаемости достигается при концентрации 
40 мкМ (выживаемость 70.2%). В то же время 
при инкубации клеток с SNO-HSA и HSA-Cy5-
HcyB12H11 не выявлено значительного снижения 
жизнеспособности клеток по сравнению с натив- 
ным альбумином.

Полученные нами результаты представляют 
большой интерес для создания на основе альбу- 
мина систем доставки лекарственных препаратов 
для БНЗТ с контролируемой скоростью высво- 
бождения нитрозогруппы.

кДа кДа

m/z

Длина волны, нм

–
–
–
–

Рис. 5. Характеристики многофункциональных конъюгатов сывороточного альбумина человека. (а) – Электронные 
спектры поглощения HSA и его гомоцистамидов в буфере PBS, pH 7.4: (б) – MALDI-TOF-масс-спектры HSA и его 
гомоцистамидов; (в) – SDS-PAGE гомоцистамидных конъюгатов HSA в условиях Лэммли с последующим окрашиванием 
кумасси синим.

(а) (б)

(в)
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ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Реактивы и клеточные линии. Клеточная ли- 
ния глиобластомы человека T98G была при- 
обретена в Институте цитологии РАН (Санкт-
Петербург, Россия).

Реагенты и материалы были приобретены у  
Sigma-Aldrich (США) и Reached (Россия), если  
не указано иное. Сульфо-Cy5-малеимид приоб- 
ретен у Lumiprobe (Россия). L-глутатион восстанов- 
ленный приобретен у Renal (Венгрия). Во всех 
экспериментах использовали воду Milli-Q с про- 
водимостью >18 МΩ/см. Использовали фосфатно-
буферный физиологический раствор (PBS)  
(10 мМ Na2HPO4, 2 мМ KH2PO4, 137 мМ NaCl,  
2.7 мМ KCl, рН 7.4 (Amresco, США). Органические 
растворители высушивали и очищали с помощью 
стандартных процедур.

Диоксониевое производное клозо-додекабората 
было любезно предоставлено сотрудниками ЛОрС 
ИХБФМ СО РАН. 

В работе использовали свободный от глобу- 
линов и жирных кислот сывороточный альбумин 
человека (кат. № А3782, Sigma-Aldrich, США).

Остальные химические реактивы были полу- 
чены из коммерческих источников и использованы 
без предварительной очистки.

Физико-химические методы. Электронные 
спектры поглощения получали на спектрометре 
UV-1800 (Shimadzu, Япония). Концентрации 
растворов альбумина определяли методом погло- 
щения при 278 нм, рН 7.4, используя моляр- 
ный коэффициент экстинкции в PBS ε = 3.7 ×  
104 М–1 см–1 [59]. Концентрации растворов конъю- 
гатов альбумина, содержащих флуоресцентный  
краситель Cy5, определяли спектрофотометри- 
ческим методом на длине волны 650 нм, рН 7.4, 
используя молярный коэффициент экстинкции 
красителя ε = 6.5 × 104 М–1 см–1. Спектры пог- 
лощения растворов регистрировали в кварцевых 
кюветах с длиной пути 0.1 см.

Спектры ЯМР регистрировали при 25°С в  
5-мм ЯМР-ампулах. Химические сдвиги (δ) пред- 
ставлены в частях на миллион (м.д.), а константы 
связи (J) – в Герцах (Гц). 13С-ЯМР-спектры регис- 
трировали на спектрометре DRX-500 (Bruker, 
Германия; рабочая частота 125.7 MГц). Все хими- 
ческие сдвиги в спектрах 13С-ЯМР оценивали 
относительно растворителей: ацетона-d6, ацето- 
нитрила, хлороформа-d3 и DMSO-d6. 1Н-ЯМР-
спектры регистрировали на спектрометре AV-400 
(Bruker, Германия; рабочая частота 400.0 MГц), 
сигналы оценивали относительно растворителей 
хлороформа-d3 и DMSO-d6. Кратность каждого 
сигнала обозначена следующим образом: c – синг- 
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Рис. 6. Жизнеспособность клеток T98G, обработанных HSA, HSA-Cy5-HcyB12H11 и HSA-Cy5-HSA-Cy5-HcyB12H11-NO. 
Доза конъюгатов составляла 0.02–40 мкМ в белковом эквиваленте. Все данные представлены как среднее значение 
± SD (n = 3). Для сравнения более чем двух наборов данных использовали двусторонний дисперсионный анализ.  
**** p ≤ 0.0001.
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лет, д – дублет, дд – дублет дублетов, т – триплет, 
к – квадруплет, м – мультиплет.

MALDI-TOF-масс-спектры белков регис- 
трировали на масс-спектрометре Autoflex Speed 
(Bruker Daltonics, Германия) MALDI-TOF в поло- 
жительном линейном режиме. В качестве матрицы 
использовали 2,5-дигидроксибензойную кислоту. 
Образцы белка обессоливали наконечниками 
ZipTip C4. Масс-спектры получали путем усредне- 
ния 3000 лазерных снимков. Внешнюю калиб- 
ровку обеспечивали с помощью HSA (m/z 66 500 Да,  
[M + H]+).

ESI-масс-спектры регистрировали на приборе 
ESI MSD XCT Ion Trap (Agilent Technologies, 
США) в негативной моде.

ИК-спектры регистрировали на Фурье-ИК-
спектрометре 640-IR (Varian, США) в диапазоне 
4000–400 см–1 в сухом KBr.

Электрофоретический анализ HSA и его 
конъюгатов проводили по методу Лэммли [60].  
Гель окрашивали 0.1% Кумасси CBB G-250.  
Электрофореграммы количественно анализиро- 
вали с использованием программы Gel Anayser 
2010 (http://www.gelanalyzer.com/).

Атомно-эмиссионная спектрометрия с ин- 
дуктивно-связанной плазмой (АЭС-ИСП) для 
определения содержания бора в полученных 
белковых конъюгатах была проводена на спектро- 
метре высокого разрешения ICPE-9820 (Shimadzu, 
Япония) А.И. Касатовой (Институт ядерной фи- 
зики им. Г.И. Будкера СО РАН).

Тонкослойную хроматографию выполняли на 
пластинках DC-Alufolien Kieselgel 60 F254 (Merck, 
Германия) в хлористом метилене. Пластины ТСХ 
анализировали окрашиванием в иодной камере, 
нингидрином и 23 мM раствором PdCl2 в 0.5 М 
растворе HCl.

Очистку белковых конъюгатов проводили 
с помощью ультрафильтрационных центриконов 
объемом 0.5 мл (Amicon Centriprep YM 30, 
Millipore, Великобритания), пропускающих моле- 
кулы с молекулярной массой <3000 Да. Промы- 
вали 20%-ным (v/v) раствором DMSO в PBS 
порциями по 400 мкл, суммарно 10 объемами реак- 
ционной смеси, и далее – PBS такими же пор- 
циями, пятью объемами реакционной смеси.

Синтетические методики. Синтез S-нитро- 
зоглутатиона был адаптирован согласно мето- 
дике [61]. К перемешиваемому при охлаждении 

на льду раствору глутатиона (0.165 г, 0.5 ммоль) в 
воде (0.862 мл), содержащему 2 N HCl (0.216 мл),  
добавляли нитрит натрия (0.037 г, 0.5 ммоль). К ро- 
зовому раствору через 40 мин при 5°C добавляли 
ацетон (1 мл) и перемешивали еще 10 мин, после  
чего оставляли в морозильной камере на ночь. 
Образовавшийся мелкодисперсный осадок бледно-
красного цвета отфильтровывали, промывали по- 
следовательно 3 раза охлажденным ацетоном (по  
1 мл) и 3 раза охлажденной до 5°C водой (по 1 мл).  
Полученное вещество оставляли сушиться в экси- 
каторе с CaCl2 на ночь. Выход S-нитрозоглута- 
тиона составил 40.67%. 1Н-ЯМР (DMSO-d6): 1.84– 
1.98 (2Н, уш. м, J 7.329, 7.057, Н-2), 2.09 (1Н, с., 
Н-2), 2.17–2.25 (2Н, т., J 7.329, Н-3), 2.26–2.38 (2Н, 
м., J 8.143, Н-3), 2.71–2.79 (2Н, дд., J 8.305, Н-5), 
3.05–3.12 (2Н, дд., J 8.305, Н-5), 3.51–3.64 (1Н, м., 
J 7.057, 7.833, Н-1), 3.65–3.84 (2Н, д., J 9.438, Н-6), 
3.85–3.99 (1Н, уш. с., Н-5), 4.38–4.46 (1Н, уш. с., 
Н-4). 13С-ЯМР (75.43 МГц, CDCl3 + DMSO-d6): 26 
(1С, с., С-3, СН2), 32 (1С, с., С-4, СН2), 42 (1С, с., 
С-9, СН2), 54 (1С, с., С-2, СH), 55 (1С, с., С-6, СН), 
172 (1С, с., С-7, СН2S), 173 (2С, с., С-5,8 С=ONH2), 
174 (2С, с., С-1,10 СO2H).

Синтез производного тиолактона гомоцис- 
теина, содержащего клозо-додекаборат (HTL-
B12H11). К раствору гидрохлорида HTL (61.4 мг,  
0.4 ммоль) в сухом CH3CN (1.85 мл) добавляли 
DIPEA (76.8 мкл, 0.44 ммоль) и раствор диоксо- 
ниевого производного клозо-додекабората (94.5 мг, 
0.2 ммоль) в сухом CH3CN (462 мкл). Полученную 
смесь выдерживали при комнатной температуре в 
течение 1 ч. Реакцию контролировали с помощью 
ТСХ (элюент CH2Cl2), как описано выше. Далее 
реакционную смесь концентрировали до 300 мкл 
на ротационном испарителе. Продукт реакции 
очищали на стеклянной колонке (длина 12 см, диа- 
метр 1 см) с силикагелем (0.04–0.063 мм, Macheney-
nagel). В качестве элюента использовали CH2Cl2 с 
градиентом концентрации CH3OH от 0 до 100% за 
1.5 ч. Фракции собирали и анализировали методом 
ТСХ. Выход HTL-B12H11 составил 30%. ТСХ 
(CH2Cl2): Rf = 0.38. 1H-ЯМР (хлороформ-d3): 4.26 
(дд, 1H, 2-Н, J23 = 7, J23 = 12.8); 3,93 (м, 2Н, 6-Н); 
3.53–3.66 (м, 3Н, CH2, ДИПЭА); 3.42 (м, 1Н, 4α-Н); 
3.06–3.17 (м, 3Н, CH2, ДИПЭА); 2.77 (м, 2Н, 5-Н); 
2.12 (м, 3Н, CH2, м, 1Н, 3α-Н); 1,93 (м, 3Н, CH2, м, 
1Н, 3β-Н); 1.35–1.45 (м, 15Н, CH2, ДИПЭА); 0.75–
0.9 (м, 11Н, В-Н).13С-ЯМР (ацетон-d6 + CD3CN):  
204.08 (с, 1С, 1-С), 80.48 (с, 1C, 2-C), 72.84 (c, 1С, 7-C),  
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72.46 (c, 1С, 6-C), 71.41 (c, 1С, 8-C), 44.15 (c, 1С, 5-C),  
30.85 (c, 1С, 4-C), 24.12 (c, 1С, 3-C). ИК-спектро- 
скопия: B–H 2480 см–1, С=О 1700 см–1, B–O 
1290 см–1. ESI в отрицательной моде: рассчитано 
для [C8O3SNB12H25 + H]– 348, обнаружено 348; 
рассчитано для [C8O3SNB12H25

3– + 2К+]– 426, об- 
наружено 427.

Синтез HSA-Cy5-HcyB12H11. Синтез HSA-Cy5 
и N-гомоцистеилирование белка осуществляли 
согласно методике [62]. Растворы белка HSA-Cy5 
в буфере PBS (0.84 мM, 0.931 мл, 0.78 мкмоль) 
смешивали с производным HTL-B12H11 в DMSO 
(0.125 M, 0.05 мл, 5.04 мкмоль). Соотношение 
PBS и DMSO в реакционной смеси было 20 : 1  
(v/v). Реакцию проводили в течение 42 ч при  
37°C. Очистку итогового конъюгата осуществляли 
с помощью ультрафильтрационных пробирок 
Millipore. Выход HSA-Cy5-HcyB12H11 составил 
89.5%. УФ-спектр (PBS-буфер, pH 7.4): λmax = 278 нм  
(ε = (4.7 ± 0.1) × 104 М–1 см–1), λmax = 650 нм (ε =  
(6.5 ± 0.1) × 104 М–1 см–1). MALDI-TOF, m/z: рассчи- 
танное значение Mw HSA-Cy5-HcyB12H11 67.039 Да:  
66  500 Да (HSA) + 192 Да (0.25 Cy5) + 347 
(HcyB12H11). Измеренное значение Mw HSA-Сy5- 
HcyB12H11 67 600 Да, соответствует присоедине- 
нию 2.6 остатков HcyB12H11 на молекулу белка. 
АЭС-ИСП: 2.4 остатка HcyB12H11 на молекулу 
альбумина. 

Нитрозилирование Hcy-HSA и альбумина 
S-нитрозоглутатионом. При нитрозилирова- 
нии использовали 0.3 мМ растворы белковых об- 
разцов (HSA или HSA-Сy5-HcyB12H11) в смеси  
PBS : DMSO с содержанием DMSO 20%. Исполь- 
зовали пятикратный избыток S-нитрозоглутатиона 
по отношению к количеству SH-групп на белковом 
образце. Реакционные смеси инкубировали при  
37°C в течение 18 ч при перемешивании. За  
ходом реакции следили по уменьшению интенсив- 
ности полосы S-нитрозоглутатиона (334 нм) в  
спектрах поглощения реакционных смесей. Про- 
цесс завершали после того, как интенсивность 
поглощения переставала меняться. После инку- 
бации S-нитрозилированные белки очищали от 
низкомолекулярных продуктов реакции методом 
ультрацентрифугирования на мембранах Centricon 
Amicon Ultra 3К (Millipore, США). В качестве 
элюента использовали раствор 10%-ного DMSO 
в PBS. 

Количество NO на белковых образцах. В 
одну порцию раствора белкового образца (HSA-

Cy5-HcyB12H11–NO или HSA–NO) в ацетатном 
буфере (pH 2.5; концентрация образца по белку  
2.0 × 10–6 М; 1 мл) добавляли раствор сульфани- 
ловой кислоты в 4 × 10–4 М соляной кислоте 
(3.5 × 10–2 М, 0.2 мл). Во вторую порцию такого 
же раствора добавляли смесь сульфаниловой 
кислоты и ацетата ртути(II) в 4 × 10–4 М соляной 
кислоте (0.2 мл; концентрация сульфаниловой 
кислоты 3.5 × 10–2 М; концентрация ацетата 
ртути(II) 7.4 × 10–3 М). Полученные смеси вы- 
держивали в темноте 3 мин, после этого к ним до- 
бавляли раствор нафтилэтиленамина в 4 × 10–4 М  
соляной кислоте (2.5 × 10–2 М; 0.05 мл). Получен- 
ные смеси выдерживали в темноте в течение  
35 мин. В качестве контроля использовали анало- 
гичные смеси с HSA-Cy5-HcyB12H11. Количество  
оксида азота(II) было определено спектрофото- 
метрически на длине волны 540 нм. Для калиб- 
ровки использовали раствор нитрита натрия с 
концентрациями 0.0 М, 0.8 × 10–6 М, 1.6 × 10–6 М, 
2.4 × 10–6 М, 3.2 × 10–6 М, 4.0 × 10–6 М).

По итогам измерений было обнаружено, что  
2 моль NO конъюгировано с 1 моль борсодержа- 
щего HSA, а в случае HSA в среднем 0.5 моль NO 
конъюгировано с 1 моль борсодержащего HSA. 

Анализ жизнеспособности клеток (МТТ-
тест). Влияние модифицированных образцов 
белка проводили с помощью МТТ-теста на кле- 
точных линиях глиомы человека T98G [58]. Клет- 
ки выращивали до фазы экспоненциального роста  
и затем высевали в 96-луночные планшеты. Кон- 
центрация клеток составляла 2000 клеток на лунку.  
Перед обработкой клетки инкубировали в течение 
72 ч. После этого их обрабатывали средой, содер- 
жащей альбумин или его конъюгаты (HSA-Cy5-
HcyB12H11 или HSA-Cy5-HSA-Cy5-HcyB12H11-
NO). Концентрации конъюгатов находились в 
диапазоне 0.02–40 мкМ по содержанию белка. 
Обработку проводили при 37°С в течение 72 ч. 
После этого добавляли МТТ до концентрации 
0.5 мг/мл. После инкубации при 37°С в течение  
2 ч среду удаляли и в каждую лунку добавляли по 
100 мкл изопропанола для растворения кристал- 
лов формазана. Планшет анализировали с исполь- 
зованием микропланшетного ридера Multiscan FC 
(Thermo Fisher Scientific, США) с пиком погло- 
щения при 570 нм. В качестве базовой линии ис- 
пользовали интенсивность поглощения при 620 нм.  
Для каждого образца белка проводили три незави- 
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симых теста. Данные представлены как средние 
значения со стандартными отклонениями.

ЗАКЛЮЧЕНИЕ

Использование тиолактона гомоцистеина для  
введения в белок дополнительных сульфгидриль- 
ных групп открывает поистине уникальные воз- 
можности. Благодаря присутствию в структуре 
тиолактона двух функциональных групп (амино- 
группа и тиолактоновый цикл) он может реагировать 
как с нуклеофильными агентами (тиоэфирная 
группировка), так и с электрофильными реаген- 
тами (аминогруппа). Таким образом, через моди- 
фикацию аминогруппы тиолактона можно полу- 
чать различные производные природного модифи- 
катора, а наличие тиолактонового кольца обес- 
печивает возможность присоединения модифи- 
цированного остатка гомоцистеина к боковым 
радикалам лизина в белке. В результате реакции 
алкилирования аминогруппы тиолактона гомо- 
цистеина диоксониевым производным клозо- 
додекабората нами получен новый активирован- 
ный тиоэфир гомоцистеина, содержащий атомы  
бора. Установлено, что в ходе синтеза производ- 
ного тиолактона гомоцистеина не происходит 
разрушение γ-лактамного кольца ацилирующего 
агента. С его использованием путем N-гомоцис- 
теинилирования синтезирован конъюгат сыворо- 
точного альбумина человека, в котором борсодер- 
жащий остаток гомоцистеина и белок связаны 
устойчивой амидной связью.

Для транс-нитрозилирования борсодержащего 
гомоцистеиниламида альбумина был использован 
S-нитрозоглутатион. Обнаружено, что 2 моль NO  
конъюгировано с 1 моль борсодержащего HSA, в 
то время как при модификации нативного белка  
с 1 моль альбумина связывается только 0.5 моль  
монооксида азота. Используя при N-гомоцистеини- 
лировании оптимальное соотношение ацилирую- 
щего реагента и молекул белка, мы посред- 
ством сайт-специфической модификации мини- 
мизировали изменение в структуре альбумина, 
что важно для получения препаратов с высокой 
противоопухолевой активностью. Было про- 
демонстрировано, что борсодержащий S-нитрозо- 
тиол на основе гомоцистеиниламида альбумина,  
даже без облучения эпитепловыми нейтронами,  
более цитотоксичен в отношении клеточных линий 
глиобластомы человека, чем борсодержащий 
конъюгат альбумина. Разработанный бор-обога- 
щенный экзогенный донор оксида азота содержит 

репортерную группу, введенную по остатку Cys34,  
которая способна обеспечить возможность при- 
жизненной визуализации процесса доставки те- 
рапевтической наноконструкции в опухоль.

HSA – наиболее распространенный транс- 
портный белок в плазме, в последнее время  
широко используемый для создания противо- 
опухолевых наноконструкций. Основные при- 
чины выбора данного белка в качестве транс- 
портера лекарственных препаратов в рако- 
вые клетки – его биосовместимость, биоразлага- 
емость и неиммуногенность. Альбумин прояв- 
ляет активное нацеливание на опухоль посред- 
ством взаимодействия с белками gp60 и SPARC  
(секретируемый кислый и богатый цистеином  
белок), распространенными в опухолеассоци- 
ированных эндотелиальных клетках и микро- 
окружении опухоли. Полученные нами результаты 
представляют большой интерес для создания на 
основе альбумина систем доставки лекарственных 
препаратов для БНЗТ с контролируемой скоростью 
высвобождения нитрозогруппы.
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Preparation of Boron-Containing S-Nitrosothiol Based  
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The strategic aim of this work is to create a fluorophore-labelled, clinically relevant exogenous NO do-
nor carrying a boron-containing compound residue on the basis of human serum albumin (HSA) for the 
implementation of combined NO-chemotherapy and boron-neutron-capture therapy. By selective modifica-
tion of the Cys34 residue of albumin with a maleimide derivative of a fluorescent dye and subsequent N- 
homocysteinylation with a thiolactone derivative of homocysteine containing a clozo-dodecaborate residue, 
a nanoconstruct for boron-neutron-capture therapy was obtained. An analogue based on the natural modifier, 
boron-containing homocysteine thiolactone, was synthesised by alkylation of the amino group of thiolactone 
with a dioxonium derivative of clozo-dodecaborate. Post-synthetic modification of the lysine residues of the 
protein using the boron thiolactone of homocysteine provided the introduction of SH groups into the protein 
and the possibility of subsequent trans-S-nitrosylation of the protein using S-nitrosoglutathione. It was 
found that 2 mol of NO was conjugated to 1 mol of boron-containing HSA. Boron-containing S-nitrosothiol 
based on albumin homocysteinylamide, without epithermal neutron irradiation, was demonstrated to be 
more cytotoxic against human glioblastoma cell lines than the boron-containing albumin conjugate. Thus, 
the approach used allows obtaining a boron-enriched structure based on a biocompatible tumor-specific 
protein, containing a fluorescent label and an increased number of S-nitroso groups. It is necessary for the 
manifestation of a chemotherapeutic effect of the construct. The practical significance of this structure lies 
in the possibility of a cancer treating, combining chemo- and boron-neutron capture therapy.

Keywords: S-nitrosoglutathione, clozo-dodecaborate, boron-containing homocysteine thiolactone,  
S-nitrosylated boron-containing homocysteinylamide albumin, boron-neutron-capture therapy


